题目内容
【题目】小球从离地5m高处,向离小球4m远的竖直墙以8m/s的速度水平抛出,不计空气阻力(g取10m/s2)求:
(1)小球碰墙点离地面的高度?
(2)要使小球不碰到墙,小球的初速度必须满足什么条件?
【答案】
(1)
小球在水平方向上做匀速直线运动,小球碰墙时有 x=v0t
解得 t= = s=0.5s.
t时间内小球下落的高度 h= = m=1.25m.
则小球碰墙点离地面的高度 h′=H﹣h=5﹣1.25m=3.75m.
答:小球碰墙点离地面的高度为3.75m.
(2)
小球刚好不碰墙时,落地的时间 t′= = s=1s.
小球对应的初速度 v0′= = m/s=4m/s.
所以要使小球不碰到墙,小球的初速度应小于4m/s.
答:要使小球不碰到墙,小球的初速度必须小于4m/s.
【解析】(1)平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,抓住水平位移和初速度求出运动的时间,从而求出竖直方向上下落的高度,得出小球碰墙点离地面的高度.(2)要使小球不碰到墙,临界情况落地时水平位移恰好为4m,结合平抛运动的规律求出小球的最大初速度.
【考点精析】本题主要考查了平抛运动的相关知识点,需要掌握特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动;运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动才能正确解答此题.
练习册系列答案
相关题目