题目内容

设地球的质量为M,半径为R,自转角速度为ω,引力常量为G,同步卫星离地心高度为r,地表重力加速度为g,则同步卫星的速度v(  )
分析:根据线速度与角速度的关系,万有引力提供向心力、万有引力等于重力,抓住同步卫星的角速度与地球自转的角速度相等进行分析求解.
解答:解:A、因为同步卫星的角速度与地球自转的角速度相等,则同步卫星的线速度v=ωr.故A正确.
B、C根据万有引力提供向心力,有:G
Mm
r2
=m
v2
r
,解得v=
GM
r

由上式得v2=
GM
r
,则v3=
GM
r
?v
=GMω,则得,v=
3GMω
.故B错误,C正确.
D、因为GM=gR2,所以v=
GM
r
=
gR2
r
=R
g
r
.故D正确.
故选:ACD
点评:解决本题的关键知道同步卫星的角速度与地球自转的角速度相等,以及掌握万有引力提供向心力和万有引力等于重力这连个理论,并能灵活运用.
练习册系列答案
相关题目

(14分)

 

(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M

(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

【解析】:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r。根据万有引力定律和牛顿第二定律有

                            ①

    于是有                           ②

即                                ③

(2)在月地系统中,设月球绕地球运动的轨道半径为R,周期为T,由②式可得

                                ④

解得     M=6×1024kg                         ⑤

M=5×1024kg也算对)

23.【题文】(16分)

     如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P点射出。

(1)求电场强度的大小和方向。

(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。

(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网