题目内容
【题目】如图所示,AB是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数μ=0.5,BCD是半径为R=0.16m的光滑圆弧轨道,它们相切与B点,C为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E=5.0×102N/C,质量m=0.2kg的带电滑块从斜面顶端由静止开始滑下.已知斜面AB对应的高度h=0.24m,滑块带电荷q=-6.0×10-3C,取重力加速度g=10m/s2,.求:
(1)滑块从斜面最高点滑到斜面底端B点时的速度大小;
(2)滑块滑到圆弧轨道最低点C时对轨道的压力.
【答案】(1) (2)
【解析】试题分析:(1)滑块沿斜面滑下的过程中,根据动能定理求解滑到斜面底端B点时的速度大小
(2)滑块从B 到C 点,由动能定理可得C点速度,由牛顿第二定律和由牛顿第三定律求解.
解:(1)滑块沿斜面滑下的过程中,受到的滑动摩擦力
f=μ(mg+qE)cos37°=0.96N
设到达斜面底端时的速度为v,根据动能定理得
(mg+qE)h﹣
解得 v1=2.4m/s.
(2)滑块从B 到C 点,由动能定理可得:
(mg+qE)R(1﹣cos37°)=
当滑块经过最低点时,有
FN﹣(mg+qE)=
由牛顿第三定律:F′N=FN
解得:F′N=11.36N,方向竖直向下.
答:(1)滑块从斜面最高点滑到斜面底端B点时的速度大小是2.4m/s;
(2)滑块滑到圆弧轨道最低点C时对轨道的压力是11.36N.方向竖直向下.
练习册系列答案
相关题目