题目内容
【题目】一个质量为0.2kg的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10m/s2的加速度向右做加速运动时,则( )(sin53°=0.8,cos53°=0.6,g=10m/s2 )
A.绳的拉力为1.60N
B.绳的拉力为2 N
C.斜面对小球的弹力为1.20N
D.斜面对小球的弹力为0
【答案】B,D
【解析】解:当加速度a较小时,小球与斜面一起运动,此时小球受重力、绳子拉力和斜面的支持力,绳子平行于斜面;当加速度a足够大时,小球将飞离斜面,此时小球仅受重力与绳子的拉力作用,绳子与水平方向的夹角未知,而题目要求出当斜面以10m/s2的加速度向右做加速运动时,绳的拉力及斜面对小球的弹力,必须先求出小球离开斜面的临界加速度a0,(此时小球所受斜面的支持力恰好为零)
小球的受力如图:
由牛顿第二定律得:F合=mgcotθ=ma0
解得:a0=gcotθ=7.5m/s2
因为:a=10m/s2>a0
所以小球一定离开斜面N=0,小球的受力如图所示:
则水平方向有牛顿第二定律得:Tcosα=ma
竖直方向有受力平衡得:Tsinα=mg
由以上两式整理得:T= = =2 N;
N=0
故AC不符合题意,B的符合题意;
所以答案是:BD.
【考点精析】利用力的合成和力的分解对题目进行判断即可得到答案,需要熟知求几个已知力的合力,叫做力的合成;共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2;求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算);在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.
练习册系列答案
相关题目