ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬¹â»¬Ë®Æ½ÃæÉÏ£¬ÖÊÁ¿Îª2mµÄСÇòBÁ¬½Ó×ÅÇáÖʵ¯»É¡¢´¦ÓÚ¾²Ö¹×´Ì¬£»ÖÊÁ¿ÎªmµÄСÇòAÒÔËÙ¶Èv0ÏòÓÒÔÈËÙÔ˶¯£¬½Ó×ÅÖð½¥Ñ¹Ëõµ¯»É²¢Ê¹BÔ˶¯£¬¹ýÒ»¶Îʱ¼äºó£¬AÓ뵯»É·ÖÀ룮ÉèСÇòA¡¢BÓ뵯»ÉÏ໥×÷Óùý³ÌÖÐÎÞ»úеÄÜËðʧ£¬µ¯»ÉʼÖÕ´¦ÓÚµ¯ÐÔÏÞ¶ÈÒÔÄÚ£®
£¨1£©Çóµ±µ¯»É±»Ñ¹Ëõµ½×î¶Ìʱ£¬µ¯»ÉµÄµ¯ÐÔÊÆÄÜE£®
£¨2£©Èô¿ªÊ¼Ê±ÔÚСÇòBµÄÓÒ²àijλÖù̶¨Ò»¿éµ²°å£¨Í¼ÖÐδ»³ö£©£¬ÔÚСÇòAÓ뵯»É·ÖÀëǰʹСÇòBÓëµ²°å·¢ÉúÕýײ£¬²¢ÔÚÅöºóÁ¢¿Ì½«µ²°å³·×ߣ®ÉèСÇòBÓë¹Ì¶¨µ²°åµÄÅöײʱ¼ä¼«¶Ì£¬ÅöºóСÇòBµÄËٶȴóС²»±ä¡¢µ«·½ÏòÏà·´£®Éè´Ëºóµ¯»ÉÐÔÊÆÄܵÄ×î´óֵΪEm£¬ÇóEm¿ÉÄÜÖµµÄ·¶Î§£®
£¨1£©Çóµ±µ¯»É±»Ñ¹Ëõµ½×î¶Ìʱ£¬µ¯»ÉµÄµ¯ÐÔÊÆÄÜE£®
£¨2£©Èô¿ªÊ¼Ê±ÔÚСÇòBµÄÓÒ²àijλÖù̶¨Ò»¿éµ²°å£¨Í¼ÖÐδ»³ö£©£¬ÔÚСÇòAÓ뵯»É·ÖÀëǰʹСÇòBÓëµ²°å·¢ÉúÕýײ£¬²¢ÔÚÅöºóÁ¢¿Ì½«µ²°å³·×ߣ®ÉèСÇòBÓë¹Ì¶¨µ²°åµÄÅöײʱ¼ä¼«¶Ì£¬ÅöºóСÇòBµÄËٶȴóС²»±ä¡¢µ«·½ÏòÏà·´£®Éè´Ëºóµ¯»ÉÐÔÊÆÄܵÄ×î´óֵΪEm£¬ÇóEm¿ÉÄÜÖµµÄ·¶Î§£®
·ÖÎö£º£¨1£©µ±A¡¢BËÙ¶ÈÏàͬʱ£¬µ¯»É±»Ñ¹Ëõµ½×î¶Ì£¬µ¯»ÉµÄÊÆÄÜ×î´ó£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂɺÍÄÜÁ¿Êغ㶨ÂÉÇó³öµ¯»ÉµÄ×î´óµ¯ÐÔÊÆÄÜ£®
£¨2£©¶ÔBÇòÓëµ²°åÅöײǰ˲¼äºÍBÓëµ²°åÅöºó·´µ¯£¬µ±A¡¢BËÙ¶ÈÏàµÈÁ½¸ö¹ý³ÌÔËÓö¯Á¿Êغ㶨ÂÉ£¬Í¨¹ýÄÜÁ¿ÊغãÇó³ö×î´óµ¯ÐÔÊÆÄÜÓëBËٶȵıí´ïʽ£®Í¨¹ý¶ÔBËÙ¶È×î´óÖµµÄ·¶Î§µÃ³öµ¯»Éµ¯ÐÔÊÆÄÜ×î´óÖµµÄ·¶Î§£®
£¨2£©¶ÔBÇòÓëµ²°åÅöײǰ˲¼äºÍBÓëµ²°åÅöºó·´µ¯£¬µ±A¡¢BËÙ¶ÈÏàµÈÁ½¸ö¹ý³ÌÔËÓö¯Á¿Êغ㶨ÂÉ£¬Í¨¹ýÄÜÁ¿ÊغãÇó³ö×î´óµ¯ÐÔÊÆÄÜÓëBËٶȵıí´ïʽ£®Í¨¹ý¶ÔBËÙ¶È×î´óÖµµÄ·¶Î§µÃ³öµ¯»Éµ¯ÐÔÊÆÄÜ×î´óÖµµÄ·¶Î§£®
½â´ð£º½â£º£¨1£©µ±AÇòÓ뵯»É½Ó´¥ÒÔºó£¬ÔÚµ¯Á¦×÷ÓÃϼõËÙÔ˶¯£¬¶øBÇòÔÚµ¯Á¦×÷ÓÃϼÓËÙÔ˶¯£¬µ¯»ÉÊÆÄÜÔö¼Ó£¬µ±A¡¢BËÙ¶ÈÏàͬʱ£¬µ¯»ÉµÄÊÆÄÜ×î´ó£®
ÉèA¡¢BµÄ¹²Í¬ËÙ¶ÈΪv£¬µ¯»ÉµÄ×î´óÊÆÄÜΪE£¬ÔòA¡¢Bϵͳ¶¯Á¿Êغ㣺mv0=£¨m+2m£©v¢Ù
ÓÉ»úеÄÜÊغ㣺
m
=
£¨m+2m£©v2+E¡¢Ú
ÁªÁ¢Á½Ê½µÃ£ºE=
m
¡¢Û
£¨2£©ÉèBÇòÓëµ²°åÅöײǰ˲¼äµÄËÙ¶ÈΪvB£¬´ËʱAµÄËÙ¶ÈΪvA£®
ϵͳ¶¯Á¿Êغ㣺mv0=mvA+2mvB¡¢Ü
BÓëµ²°åÅöºó£¬ÒÔvBÏò×óÔ˶¯£¬Ñ¹Ëõµ¯»É£¬µ±A¡¢BËÙ¶ÈÏàͬ£¨ÉèΪv¹²£©Ê±£¬µ¯»ÉÊÆÄÜ×î´ó£¬ÎªEm£¬
Ôò£ºmvA-2mvB=3mv¹²¡¢Ý
m
¨T
¡Á3m
+Em¡¢Þ
ÓɢܢÝÁ½Ê½µÃ£ºv¹²=
´úÈë¢Þʽ£¬»¯¼òµÃ£ºEm=
[-£¨vB-
£©2+
]¡¢ß
¶øµ±µ¯»É»Ö¸´Ô³¤Ê±ÏàÅö£¬vBÓÐ×î´óÖµvBm£¬Ôò£º
mv0=mvA¡ä+2mvBm
mv02=
mvA¡ä2+
¡Á2mvBm2
ÁªÁ¢ÒÔÉÏÁ½Ê½µÃ£ºvBm=
v0¼´vBµÄÈ¡Öµ·¶Î§Îª£º0£¼VB¡Ü
v0¡¢à
½áºÏ¢ßʽ¿ÉµÃ£ºµ±vB=
ʱ£¬EmÓÐ×î´óֵΪ£º
m
¡¢á
µ±vB=
v0ʱ£¬EmÓÐ×îСֵΪ£º
m
´ð£º£¨1£©µ±µ¯»É±»Ñ¹Ëõµ½×î¶Ìʱ£¬µ¯»ÉµÄµ¯ÐÔÊÆÄÜÊÇ
m
£®
£¨2£©´Ëºóµ¯»ÉµÄµ¯ÐÔÊÆÄÜ×î´óÖµµÄ·¶Î§Îª[
m
£¬
m
]£®
ÉèA¡¢BµÄ¹²Í¬ËÙ¶ÈΪv£¬µ¯»ÉµÄ×î´óÊÆÄÜΪE£¬ÔòA¡¢Bϵͳ¶¯Á¿Êغ㣺mv0=£¨m+2m£©v¢Ù
ÓÉ»úеÄÜÊغ㣺
1 |
2 |
v | 2 0 |
1 |
2 |
ÁªÁ¢Á½Ê½µÃ£ºE=
1 |
3 |
v | 2 0 |
£¨2£©ÉèBÇòÓëµ²°åÅöײǰ˲¼äµÄËÙ¶ÈΪvB£¬´ËʱAµÄËÙ¶ÈΪvA£®
ϵͳ¶¯Á¿Êغ㣺mv0=mvA+2mvB¡¢Ü
BÓëµ²°åÅöºó£¬ÒÔvBÏò×óÔ˶¯£¬Ñ¹Ëõµ¯»É£¬µ±A¡¢BËÙ¶ÈÏàͬ£¨ÉèΪv¹²£©Ê±£¬µ¯»ÉÊÆÄÜ×î´ó£¬ÎªEm£¬
Ôò£ºmvA-2mvB=3mv¹²¡¢Ý
1 |
2 |
v | 2 0 |
1 |
2 |
v | 2 ¹² |
ÓɢܢÝÁ½Ê½µÃ£ºv¹²=
v0-4vB |
3 |
8m |
3 |
v0 |
4 |
| ||
16 |
¶øµ±µ¯»É»Ö¸´Ô³¤Ê±ÏàÅö£¬vBÓÐ×î´óÖµvBm£¬Ôò£º
mv0=mvA¡ä+2mvBm
1 |
2 |
1 |
2 |
1 |
2 |
ÁªÁ¢ÒÔÉÏÁ½Ê½µÃ£ºvBm=
2 |
3 |
2 |
3 |
½áºÏ¢ßʽ¿ÉµÃ£ºµ±vB=
v0 |
4 |
1 |
2 |
v | 2 0 |
µ±vB=
2 |
3 |
1 |
27 |
v | 2 0 |
´ð£º£¨1£©µ±µ¯»É±»Ñ¹Ëõµ½×î¶Ìʱ£¬µ¯»ÉµÄµ¯ÐÔÊÆÄÜÊÇ
1 |
3 |
v | 2 0 |
£¨2£©´Ëºóµ¯»ÉµÄµ¯ÐÔÊÆÄÜ×î´óÖµµÄ·¶Î§Îª[
1 |
27 |
v | 2 0 |
1 |
2 |
v | 2 0 |
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˶¯Á¿Êغ㶨ÂÉ¡¢ÄÜÁ¿Êغ㶨ÂÉ£¬×ÛºÏÐÔ½ÏÇ¿£¬¶ÔѧÉúµÄÄÜÁ¦ÒªÇó½Ï¸ß£¬ÇÒ¶à´ÎÔËÓö¯Á¿Êغ㶨ÂÉ£¬ÊÇÒ»µÀÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿