题目内容

2.如图,真空中的A、B两正负电极板间有一匀强电场,两极板间电势差为U,场强为E,极板A点上的一个带电量为q、质量为m的电荷由静止出发,运动到相距d的极板B上,求:
(1)电荷运动的加速度是多少?
(2)电荷到达正极板时的速度多大?

分析 (1)由匀强电场的电势差与电场强度的关系求出E,在得到F,由牛顿第二定律得到加速度;
(2)由动能定理求得速度

解答 解:(1)由牛顿第二定律可得:a=$\frac{F}{m}=\frac{Eq}{m}$…①
而E=$\frac{U}{d}$…②
由①②得:a=$\frac{Uq}{dm}$
(2)由动能定理可得:Uq=$\frac{1}{2}$mv2
故v=$\sqrt{\frac{2Uq}{m}}$
答:(1)电荷运动的加速度是$\frac{Uq}{dm}$
(2)电荷到达正极板时的速度为$\sqrt{\frac{2Uq}{m}}$

点评 关键知道匀强电场的电势差与电场强度的关系,由动能定理求速度是比较快的方法,本题虽然简单,但所涉及的知识不少.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网