题目内容

如图所示,abcd是一个正方形盒子.cd边的中点有一个小孔e.盒子中有沿ad方向的匀强电场.一个质量为m带电量为q的粒子从a处的小孔沿ab方向以初速度v0射入盒内,并恰好从e处的小孔射出.(忽略粒子重力)求:
(1)该带电粒子从e孔射出的速度大小.
(2)该过程中电场力对该带电粒子做的功.
(3)若正方形的边长为l,试求该电场的场强.
分析:(1)粒子进入电场后水平方向做匀速直线运动,竖直方向做匀加速直线运动,用平均速度表示竖直位移和水平位移,求出粒子从e孔射出时竖直方向的速度,再合成求解粒子从e孔射出的速度大小.
(2)根据动能定理求出电场力做功.
(3)根据牛顿第二定律和位移公式结合求出电场强度.
解答:解:
(1)设粒子从e孔射出时竖直方向分速度为vy
则有:
水平方向:
l
2
=v0t

竖直方向:l=
vyt
2
 ②
联立①②得到,vy=4v0
所以带电粒子从e孔射出的速度大小v=
v
2
0
+
v
2
y
=
17
v0

(2)根据动能定理得,电场力对该带电粒子做的功W=
1
2
mv2-
1
2
m
v
2
0
=8m
v
2
0

(3)根据牛顿第二定律得,加速度a=
qE
m
,y=l=
1
2
at2
,t=
1
2
?
l
v0

联立得,E=
8m
v
2
0
ql

答:
(1)该带电粒子从e孔射出的速度大小为
17
v0

(2)该过程中电场力对该带电粒子做的功为8m
v
2
0

(3)若正方形的边长为l,求该电场的场强为
8m
v
2
0
ql
点评:本题是类平抛运动问题,基本方法是运动的分解法,要抓住水平和竖直两个方向位移的关系是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网