题目内容

在如图(a)所示的正方形平面oabc内存在着垂直于该平面向外的匀强磁场,磁感应强度大小为B,已知正方形边长为L.一个质量为m、带电量为+q的粒子(不计重力)在t=0时刻平行于oc边从o点射入磁场中.
(1)若带电粒子从a点射出磁场,求带电粒子在磁场中运动的时间及初速度大小;
(2)若磁场的磁感应强度按如图(b)所示的规律变化,规定磁场向外的方向为正方向,磁感应强度的大小为B,要使带电粒子从b点沿着ab方向射出磁场,求满足这一条件的磁感应强度变化的周期T及粒子射入磁场时的最大速度vm
(3)若磁场的磁感应强度按如图(b)所示的规律变化,规定磁场向外的方向为正方向,磁感应强度的大小为B,假使带电粒子能从oa边界射出磁场,求磁感应强度B变化周期T的最小值;

【答案】分析:(1)带电粒子在匀强磁场中由洛伦兹力提供向心力,做匀速圆周运动,从a点射出磁场时,运动半周,由牛顿定律和几何关系求解.
(2)由牛顿定律和圆周运动公式求出粒子圆周运动的周期.根据轨迹分析在磁场变化的半个周期内,粒子圆周运动偏转角度,确定磁场变化的周期与粒子圆周运动周期的关系,磁感应强度变化的周期T.根据对称性,粒子在磁场变化的一个周期内到达b点,其圆周运动的半径最大,速度最大.由几何知识求出最大的半径,再牛顿定律求出最大的速度.
(3)画出带电粒子恰好能从oa边界射出磁场时的轨迹,分析在磁场变化的半个周期内,根据几何知识确定粒子圆周运动偏转角度,研究磁场变化的周期与粒子圆周运动周期的关系求解.
解答:解:(1)若带电粒子从a点射出磁场,则做圆周运动的半径为r=
        带电粒子在磁场中运动的周期T==
        所需时间t==
        又根据qvB=m       得v=
    (2)若使粒子从b点沿着ab方向射出磁场,轨迹如图.
   在磁场变化的半个周期内,粒子在磁场中旋转的角度为90°,
       即
   则磁场变化的周期为T=
   由几何关系知圆弧半径为r=
   又由qvmB=m
        得vm=
(3)要使粒子从oa边射出,其临界状态轨迹如图所示
   则有sinα=,α=30°
   在磁场变化的半个周期内,粒子在磁场中旋转150°角,
   运动时间t==
     而又t=
   故磁场变化的最小周期为T=
答:(1)若带电粒子从a点射出磁场,带电粒子在磁场中运动的时间为,初速度大小为
    (2)磁感应强度变化的周期T为,粒子射入磁场时的最大速度vm
    (3)磁感应强度B变化周期T的最小值为
点评:本题解题的关键在于画出粒子运动轨迹,分析粒子圆周运动周期与磁场变化周期的关系.粒子圆周运动的时间往往根据轨迹的圆心角与周期的关系确定,t=,θ为圆心角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网