题目内容
17.如图所示,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场方向垂直桌面向下.导线框获得一向右的初速度进入并穿过磁场区域.以线框右边刚进入磁场时刻为t=0,则下列速度图象中,可能正确描述线框穿越磁场过程的是( )A. | B. | C. | D. |
分析 线圈以一定的初速度进入匀强磁场,由于切割磁感线,所以出现感应电流,从而产生安培阻力,导致线圈做加速度减小的减速运动.当完全进入后,没有磁通量变化,所以没有感应电流,不受到安培力,因此做匀速直线运动,当出现磁场时,磁通量又发生变化,速度与进入磁场相似.
解答 解:线圈以一定初速度进入磁场,则感应电动势为:E=BLv
闭合电路欧姆定律,则感应电流为:$I=\frac{E}{R}=\frac{BLv}{R}$
安培为:力$F=BIL=BL\frac{BLv}{R}=\frac{{B}^{2}{L}^{2}v}{R}$
由牛顿第二定律有:F=ma
则有:$a=\frac{{B}^{2}{L}^{2}}{mR}v$
由于v 减小,所以a也减小,当完全进入磁场后,不受到安培力,所以做匀速直线运动,当出磁场时,速度与时间的关系与进入磁场相似.
而速度与时间的斜率表示加速度的大小,因此D正确,ABC错误;
故选:D
点评 属于力与电综合题,并强调速度与时间的斜率表示加速度的大小,而由牛顿第二定律来确定加速度如何变化.
练习册系列答案
相关题目
7.如图所示,平行虚线之间有垂直于纸面向里的匀强磁场,磁场左右宽度为L,磁感应强度大小为B.一等腰梯形线圈ABCD所在平面与磁场垂直,AB边刚好与磁场右边界重合.AB长等于L,CD长等于2L,AB、CD间的距离为2L,线圈的电阻为R.现让线圈向右以恒定速度v匀速运动,从线圈开始运动到CD边刚好要进入磁场的过程中( )
A. | 线圈中感应电流沿顺时针方向 | B. | 线圈中感应电动势大小为BLv | ||
C. | 通过线圈截面的电量为$\frac{B{L}^{2}}{2R}$ | D. | 克服安培力做的功为$\frac{{{B^2}{L^3}v}}{4R}$ |
5.如图所示的电路中,电源电动势为E、内阻忽略不计,ab是总电阻为2R的滑动变阻器,滑片P刚开始位于中间位置,定值电阻的阻值为R,平行板电容器的电容为C,其下极板与地(取为零电势)相连,一电量为q带正电的粒子固定在两板中央e处,闭合开关S,待稳定后,下列判断正确的是( )
A. | e处的电势为$\frac{1}{6}$E | |
B. | 若把滑片P移至b端,稳定后粒子的电势能减少了$\frac{1}{3}$Eq | |
C. | 若把滑片P移至b端,稳定后粒子所受电场力变为原来的2倍 | |
D. | 若把滑片P移至b端,同时上极板向上移动仅使板间距变为原来的2倍,稳定后电容器的带电量变为原来的1.5倍 |
9.如图所示,细线a,b,c的一端分别固定在水平地面上,另一端系一个静止在空气中的氢气球,细线与地面的夹角分别为30°、60°和45°,如果三根细线都处于伸直状态,设a,b,c受到的拉力分别为Ta,Tb和Tc,氢气球受到的浮力为F,则( )
A. | 细线受到的拉力中Ta一定最大 | |
B. | 三根细线的拉力都不为零时,有可能Ta=Tb=Tc | |
C. | 三根细线的拉力的竖直分量之和一定等于F | |
D. | 三根细线的拉力的竖直分量之和一定小于F |
15.对于相互接触的两个物体之间,同一接触面上的弹力和摩擦力,以下说法中正确的是( )
A. | 有弹力必有摩擦力 | B. | 有摩擦力必有弹力 | ||
C. | 摩擦力的大小一定与弹力成正比 | D. | 摩擦力的方向一定与运动方向相反 |