题目内容
研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比
A.距地面的高度变大 B.向心加速度变大
B.线速度变大 D.角速度变大
A
解析试题分析:同步卫星的周期等于地球的自转周期,根据万有引力定律和牛顿第二定律可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,选项A正确;而此时万有引力减小,所以向心加速度减小、线速度减小,角速度减小,故选项B、C、D错误。
考点:万有引力定律及应用
已知地球半径为R,质量为M,自转角速度为w,万有引力恒量为G,地球同步卫星与地球表面之间的距离为h,下列计算错误的是
A.地球近地卫星做匀速圆周运动的线速度为wR |
B.地球近地卫星做匀速圆周运动的线速度为 |
C.地球同步卫星的运行速度大小为w(R+h) |
D.地球同步卫星的运行速度大小为 |
根据开普勒关于行星运动的规律和圆周运动知识知:太阳对行星的引力,行星对太阳的引力,其中M、m、r分别为太阳、行星质量和太阳与行星间的距离。下列说法正确的是
A.由和知 |
B.F和F大小相等,是作用力与反作用力 |
C.F和F'大小相等,是同一个力 |
D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力 |
2013年6月13日神舟十号与天官一号完成自动交会对接。可认为天宫一号绕地球做匀速圆周运动,对接轨道所处的空间存在极其稀薄的空气,则下面说法正确的是( )
A.如不加干预,天宫一号的轨道高度将缓慢升高 |
B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加 |
C.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间 |
D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 |
2013年12月2日,嫦娥三号探月卫星沿地月转移轨道直奔月球,从环月圆轨道上的P点实施变轨进入椭圆轨道,再由近月点 Q开始进行动力下降,最后于2013年12月14日成功落月。假设嫦娥三号在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力。下列说法正确的是
A.若已知环月段圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度 |
B.在环月段圆轨道上运行周期比在环月段椭圆轨道上的周期大 |
C.在环月段圆轨道上经过P点时开动发动机加速才能进入环月段椭圆轨道 |
D.沿环月段椭圆轨道运行时,在P点的加速度大于在Q点的加速度 |
假设将来人类登上了火星,考察完毕后,乘坐一艘宇宙飞船从火星返回地球时,经历了如图所示的变轨过程,则有关这艘飞船的下列说法,正确的是
A.飞船在轨道I上运动时的机械能大于在轨道II上运动时的机械能 |
B.飞船绕火星在轨道I上运动的周期跟飞船返回地面的过程中绕地球以轨道I同样的轨道半径运动的周期相同 |
C.飞船在轨道III上运动到P点时的加速度大于飞船在轨道II上运动到P点时的加速度 |
D.飞船在轨道II上运动时,经过P点时的速度大于经过Q点时的速度 |
“嫦娥二号”曾飞向距离地球150万公里外的“第二拉格朗日点”(图中M),在太阳和地球引力共同作用下,“嫦娥二号”能在M点与地球一起绕太阳运动(视为圆周运动)。不考虑其他星球影响,与地球相比,“嫦娥二号”
A.周期大 | B.角速度大 | C.线速度小 | D.向心加速度小 |
2013年12月2日,“嫦娥三号”探测器成功发射。与“嫦娥一号”的探月轨道不同,“嫦娥三号”卫星不采取多次变轨的方式,而是直接飞往月球,然后再进行近月制动和实施变轨控制,进入近月椭圆轨道。现假定地球、月球都静止不动,用火箭从地球沿地月连线向月球发射一探测器,探测器在地球表面附近脱离火箭。已知地球中心与月球中心之间的距离约为r =3.8×l05km,月球半径R=l.7×l03 km,地球的质量约为月球质量的81倍。在探测器飞往月球的过程中
A.探测器到达月球表面时动能最小 |
B.探测器距月球中心距离为3.8×l04 km时动能最小 |
C.探测器距月球中心距离为3.42×l05km时动能最小 |
D.探测器距月球中心距离为1.9×l05 km时动能最小 |