ÌâÄ¿ÄÚÈÝ
14£®·É»úÑз¢Àë²»¿ª¸÷Öַ綴ÊÔÑ飮ij´Î·ç¶´ÊÔÑé¼ò»¯Ä£ÐÍÈçͼËùʾ£ºÔÚ×ã¹»´óµÄ¹â»¬Ë®Æ½ÃæÉÏ£¬ÖÊÁ¿m=10kgµÄÊÔÑéÎï¿é·ÅÖÃÔÚxÖáÉϵÄAλÖã¨-L£¬0£©£®Îï¿éÓÃÒ»³¤¶ÈΪL=2mµÄÇáÖʲ»¿ÉÉ쳤µÄϸÏßË©½Ó£¬Ï¸Ï߹̶¨ÓÚˮƽÃæÉÏ×ø±êϵxOyµÄÔµãO£®Ïַ綴ÄÜÑØ+x·½Ïò³ÖÐøÇÒ¾ùÔȲúÉú×ã¹»µÄ·çÁ¦Ê¹ÊÔÑéÎï¿éÊܵ½ºã¶¨Ë®Æ½×÷ÓÃÁ¦F=100N£®ÔÚt=0ʱ¿ÌÓɵ¯Éä×°ÖÃʹÊÔÑéÎï¿é»ñµÃv0=2m/sµÄ˲ʱËٶȣ¬ÊÔÑéÎï¿éÔ˶¯Ê±¿ÉÊÓΪÖʵ㣮ÊÔ¼ÆË㣺£¨1£©Ï¸Ï߸ÕÀֱʱÎï¿éµÄλÖÃ×ø±êÖµ£»
£¨2£©ÀֱǰµÄ˲ʱ£¬ÊÔÑéÎï¿éËٶȵĴóСºÍËüÓëxÖáµÄ¼Ð½Ç¦È£®
£¨3£©Îï¿éÔٴξ¹ýxÖáʱËÙ¶ÈV2ºÍ´ËʱÉþµÄÀÁ¦T£®
·ÖÎö £¨1£©½«Îï¿éµÄÔ˶¯·Ö½âΪÑØxÖáºÍyÖáÁ½¸ö»¥Ïà´¹Ö±µÄ·ÖÔ˶¯À´´¦Àí£¬¸ù¾ÝÅ£¶ÙÔ˶¯¶¨ÂɺÍλÒÆʱ¼ä¹ØϵÇó³öËüÃÇ·¢ÉúµÄλÒÆ´óС£¬Í¨¹ýµ±Ï¸ÏßÀֱʱËüÃǵĺÏλÒÆ´óСӦµÈÓÚϸÏߵij¤¶È¼´¿ÉÇó½â£»
£¨2£©¸ù¾Ý·ÖÔ˶¯µÄ¶ÀÁ¢ÐÔ·Ö±ðÇó³öÑØxºÍy·½ÏòµÄËٶȣ¬È»ºóÇó½â¼´¿É£®
£¨3£©ÉþÀֱ˲¼ä£¬Óɼ¸ºÎ¹Øϵ¿ÉÖªÉþÓëÊúÖ±·½Ïò¼Ð½Ç£¬ÉþÀÖ±¹ý³ÌÎï¿éÑØÉþ·½ÏòËÙ¶ÈËðʧµô£¬ÔÙÓɶ¯Äܶ¨ÀíÇóÎï¿éÔٴξ¹ýxÖáʱËٶȣ®ÓÉÏòÐÄÁ¦ÖªÊ¶Çó´ËʱÉþµÄÀÁ¦£®
½â´ð ½â£º£¨1£©ÔÚÏßδÀֱ֮ǰ£¬ÊÔÑéÎï¿éÑØ+x·½Ïò×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬¼ÓËÙ¶ÈΪax=$\frac{F}{m}$=$\frac{100}{10}$=10m/s2
ÑØ+y·½Ïò×öËÙ¶ÈΪv0µÄÔÈËÙÖ±ÏßÔ˶¯£»
µ±ÊÔÑéÎï¿éÏà¶ÔÓÚOµÄλÒÆ´óС´ïµ½Ïߵij¤¶ÈLʱ£¬Ï¸Ïß½«±»ÀÖ±£®Éè´ËʱÎï¿éµÄλÖÃ×ø±êΪB£¨xB£¬yB£©£¬Ôò£º
xB+L=$\frac{1}{2}$at2
yB=v0t
ϸÏß±»ÀֱʱÓУºL2=xB2+yB2
¼´£¨5t2-2£©2+£¨2t£©2=22
½âµÃ£ºt=0.8s
ËùÒÔ£ºxB=1.2m£¬yB=1.6m
£¨2£©vx=at=8m/s£¬vy=v0=2m/s
ËùÒÔv=2m/s
tan¦È=$\frac{{v}_{y}}{{v}_{x}}$=$\frac{1}{4}$
ËùÒÔ¦È=arctan$\frac{1}{4}$
£¨3£©ÉþÀֱ˲¼ä£¬Óɼ¸ºÎ¹Øϵ¿ÉÖªÉþÓëÊúÖ±·½Ïò¼Ð½Ç¦È=370£¬ÉþÀÖ±¹ý³ÌÎï¿éÑØÉþ·½ÏòËÙ¶ÈËðʧµô£¬´ËʱÎï¿éËÙ¶È v1=vxcos¦È-vysin¦È=5.2m/s
´Ó´ËλÖÃÖÁÔٴε½´ïxÖáÓɶ¯Äܶ¨Àí£º
FL£¨1-sin¦È£©=$\frac{1}{2}m{v}_{2}^{2}-\frac{1}{2}m{v}_{1}^{2}$£¬µÃ v2=$\sqrt{43}$m/s
ÓÉÏòÐÄÁ¦¹«Ê½µÃ T-F=m$\frac{{v}_{2}^{2}}{L}$£¬µÃ T=315N
´ð£º
£¨1£©Ï¸Ï߸ÕÀֱʱÎï¿éµÄλÖÃ×ø±êֵΪ£¨1.2m£¬1.6m£©£»
£¨2£©ÀֱǰµÄ˲ʱ£¬ÊÔÑéÎï¿éËٶȵĴóСΪ2m/s£¬ËüÓëxÖáµÄ¼Ð½Ç¦ÈÊÇarctan$\frac{1}{4}$£®
£¨3£©Îï¿éÔٴξ¹ýxÖáʱËÙ¶Èv2ÊÇ$\sqrt{43}$m/s£¬´ËʱÉþµÄÀÁ¦TÊÇ315N£®
µãÆÀ ¶ÔÔȱäËÙÇúÏßÎÊÌ⣬¿ÉÒÔ²ÉÓÃÕý½»·Ö½â·¨£¬ÀûÓ÷ÖÔ˶¯µÄ¶ÀÁ¢ÐԺ͵ÈʱÐÔ£¬È»ºó¸ù¾ÝÏàÓ¦µÄ¹æÂÉÇó½â¼´¿É£®
£¨1£©ÓÉͼÖп̶ȳ߶Á³öÁ½¸ö¹âµçÃÅÖÐÐÄÖ®¼äµÄ¾àÀëx=24cm£¬ÓÉͼbÖÐÓα꿨³ß²âµÃÕÚ¹âÌõµÄ¿í¶Èd=0.52 cm£®¸ÃʵÑéС×éÔÚ×öʵÑéʱ£¬½«»¬¿é´ÓÈçͼaËùʾλÖÃÓɾ²Ö¹ÊÍ·Å£¬ÓÉÊý×Ö¼ÆʱÆ÷¿ÉÒÔ¶Á³öÕÚ¹âÌõͨ¹ý¹âµçÃÅ1µÄʱ¼ä¡÷t1£¬ÕÚ¹âÌõͨ¹ý¹âµçÃÅ2µÄʱ¼ä¡÷t2£¬Ôò»¬¿é¾¹ý¹âµçÃÅ1ʱµÄ˲ʱËٶȵıí´ïʽv1=$\frac{d}{¡÷{t}_{1}}$£¬»¬¿é¾¹ý¹âµçÃÅ2ʱµÄ˲ʱËٶȵıí´ïʽv2=$\frac{d}{¡÷{t}_{2}}$£¬Ôò»¬¿éµÄ¼ÓËٶȵıí´ïʽa=$\frac{{£¨\frac{d}{¡÷{t}_{2}}£©}^{2}-{£¨\frac{d}{¡÷{t}_{1}}£©}^{2}}{2x}$£®£¨ÓÃ×Öĸ±íʾ£©
F£¨N£© | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 |
a£¨m•s-2£© | 0.06 | 0.11 | 0.18 | 0.26 | 0.30 | 0.36 | 0.40 | 0.43 |
A£® | 5OOm | B£® | 720m | C£® | 1020m | D£® | 1200m |