题目内容
10.如图所示,公路AB与BC相互垂直,且已知AB=100m,甲车从A点以8m/s的速度沿AB行驶,乙车同时从B点以6m/s的速度沿BC行驶,问两车相距的最近距离是多少?分析 分别根据位移时间关系知位移,根据几何关系得两车距离的表达式,根据数学知识求解最小值.
解答 解:设甲位移为x=v甲t=8t
乙的位移为y=v乙t=6t
两者距离为s=$\sqrt{(100-{x}_{甲})^{2}+{x}_{乙}^{2}}$=$\sqrt{(100-8t)^{2}+(6t)^{2}}$=$\sqrt{100(t-8)^{2}+3600}$
当t=8s,距离s最小为60m
答:最小距离为60m.
点评 此题考查匀速直线运动的规律和几何知识,知道二次函数极值的求解即可.
练习册系列答案
相关题目
19.如图所示,位于竖直平面内的一长木板斜靠在竖直墙上的A点,其与水平面的夹角为53°,另一同样材料的长木板斜靠在竖直墙上的B点,其与水平面的夹角为45°,两长木板底端都在C点处.若将一小球从A点由静止释放,小球运动到C点历时为t,将同-小球从B点由静止释放,小球运动到C点历时也为t,则小球与长木板间的动摩擦因数为(sin53°=0.8,cos53°=0.6)( )
A. | $\frac{1}{7}$ | B. | $\frac{3}{14}$ | C. | $\frac{3\sqrt{2}}{8}$ | D. | $\frac{5\sqrt{2}}{8}$ |
6.如图,A、B两灯电阻相同,当滑动变阻器的滑动端P向上滑动时( )
A. | 通过电源的电流增大 | B. | 电阻R中的电流减小 | ||
C. | 电灯A将变暗一些 | D. | 电灯B将变暗一些 |