ÌâÄ¿ÄÚÈÝ
A£®Èçͼ¼×Ëùʾ£¬ÖÊÁ¿ÎªmµÄ²»´øµç¾øԵСÎï¿éB¾²Ö¹ÔÚbµã£¬¾øԵˮƽ¹ìµÀabcÓë¾øÔµ¹â»¬Ô²»¡¹ìµÀcdƽ»¬Á¬½Ó£¬dΪcd¹ìµÀµÄ×î¸ßµã£®ÖÊÁ¿Îªm¡¢µçÁ¿Îª+qµÄСÎï¿éAÒÔ³õËÙ¶Èv0=
×Ôaµã¿ªÊ¼Ë®Æ½ÏòÓÒÔ˶¯£¬µ½´ïbµãÓëСÎï¿éB·¢ÉúÕýÅö£¬ÅöײºóA¡¢BÕ³ºÏÔÚÒ»Æð²»ÔÙ·ÖÀ룮Óë´Ëͬʱ£¬ÔÚ·Ö½çÃæbb'Óë·Ö½çÃæcc'Ö®¼äµÄ¿Õ¼äÄÚ¸½¼ÓһˮƽÏò×óµÄµç³¡£¬ÉèСÎï¿éAB½øÈëµç³¡Ê±Îªt=0ʱ¿Ì£¬µç³¡Ëæʱ¼ä±ä»¯µÄͼÏóÈçͼÒÒËùʾ£¬ÒÑÖª³¡Ç¿E=
£¬T0=
£¬a¡¢bÁ½µã¾àÀëΪl0£¬µç³¡µÄ¿í¶ÈΪ
£¼L£¼l0£¬dµã¸ß¶ÈΪl0£¬Ð¡Îï¿éA¡¢BÓëˮƽ¹ìµÀµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.5£¬ÆäÓàĦ²Á²»¼Æ£¬Ð¡Îï¿éA¡¢B¾ùÊÓΪÖʵ㣮ÖØÁ¦¼ÓËÙ¶ÈÓÃg±íʾ£®Çó£º
£¨1£©Ð¡Îï¿éAµ½´ïbµã¼´½«ÓëСÎï¿éBÅöײǰµÄËÙ¶ÈvA´óС£®
£¨2£©×ÔСÎï¿éA´Óaµã¿ªÊ¼Ô˶¯µ½Ð¡Îï¿éA¡¢BµÚÒ»´ÎÀ뿪µç³¡£¬ÊÔÌÖÂÛÔÚÕâ¸ö¹ý³ÌÖÐĦ²ÁÁ¦¶ÔСÎï¿éA¡¢B×öµÄ×ܹ¦WfÓëLµÄ¹Øϵ
£¨3£©ÅжÏСÎï¿éABÄÜ·ñÉÏ»¬µ½cd¹ìµÀµÄdµã£®
B£®Èçͼ±ûËùʾ£¬a¡¢bÁ½»¬¿éÔÀ´½ô¿¿ÔÚÒ»Æ𣬾²Ö¹ÔÚˮƽÃæÉϵÄAµã£¬»¬¿éa¡¢bµÄÖÊÁ¿·Ö±ðΪm¡¢2m£¬Îï¿éÓëˮƽµØÃæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ0.1£¬BµãΪԲ¹ìµÀµÄ×îµÍµã£¬A¡¢BÖ®¼äµÄ¾àÀëΪ5R£®ÏÖÔÚa¡¢bÔÚijÖÖÄÚÁ¦µÄ×÷ÓÃÏÂͻȻ·Ö¿ª£¬aÒÔva=3
µÄËÙ¶ÈÓÉAµã¿ªÊ¼ÏòBµã»¬ÐУ¬²¢»¬ÉϹ⻬µÄ°ë¾¶ÎªRµÄ
Ô²»¡BC£¬ÔÚCµãÕýÉÏ·½ÓÐÒ»ÀëCµã¸ß¶ÈҲΪRµÄÐýתƽ̨£¬ÑØƽֱ̨¾¶·½Ïò¿ªÓÐÁ½¸öÀëÖáÐľàÀëÏàµÈµÄС¿×P¡¢Q£¬ÐýתʱÁ½¿×¾ùÄÜ´ïµ½CµãµÄÕýÉÏ·½£®Èô»¬¿é»¬¹ýCµãºó´ÓP¿×ÉÏÉýÓÖÇ¡ÄÜ´ÓQ¿×ÂäÏ£¬Çó
£¨1£©·Ö¿ªºóbÇò»ñµÃµÄËÙ¶Èvb
£¨2£©»¬¿éaÔÚBµãʱ¶Ô¹ìµÀµÄѹÁ¦£»
£¨3£©»¬¿éÉÏÉýÖÁPµãʱµÄËÙ¶ÈvP
£¨4£©Æ½Ì¨×ª¶¯µÄ½ÇËٶȦØÓ¦Âú×ãʲôÌõ¼þ£¿
7gl0 |
2mg |
q |
|
l0 |
4 |
£¨1£©Ð¡Îï¿éAµ½´ïbµã¼´½«ÓëСÎï¿éBÅöײǰµÄËÙ¶ÈvA´óС£®
£¨2£©×ÔСÎï¿éA´Óaµã¿ªÊ¼Ô˶¯µ½Ð¡Îï¿éA¡¢BµÚÒ»´ÎÀ뿪µç³¡£¬ÊÔÌÖÂÛÔÚÕâ¸ö¹ý³ÌÖÐĦ²ÁÁ¦¶ÔСÎï¿éA¡¢B×öµÄ×ܹ¦WfÓëLµÄ¹Øϵ
£¨3£©ÅжÏСÎï¿éABÄÜ·ñÉÏ»¬µ½cd¹ìµÀµÄdµã£®
B£®Èçͼ±ûËùʾ£¬a¡¢bÁ½»¬¿éÔÀ´½ô¿¿ÔÚÒ»Æ𣬾²Ö¹ÔÚˮƽÃæÉϵÄAµã£¬»¬¿éa¡¢bµÄÖÊÁ¿·Ö±ðΪm¡¢2m£¬Îï¿éÓëˮƽµØÃæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ0.1£¬BµãΪԲ¹ìµÀµÄ×îµÍµã£¬A¡¢BÖ®¼äµÄ¾àÀëΪ5R£®ÏÖÔÚa¡¢bÔÚijÖÖÄÚÁ¦µÄ×÷ÓÃÏÂͻȻ·Ö¿ª£¬aÒÔva=3
gR |
1 |
4 |
£¨1£©·Ö¿ªºóbÇò»ñµÃµÄËÙ¶Èvb
£¨2£©»¬¿éaÔÚBµãʱ¶Ô¹ìµÀµÄѹÁ¦£»
£¨3£©»¬¿éÉÏÉýÖÁPµãʱµÄËÙ¶ÈvP
£¨4£©Æ½Ì¨×ª¶¯µÄ½ÇËٶȦØÓ¦Âú×ãʲôÌõ¼þ£¿
·ÖÎö£º½âAµÄÄѵãÊǼÙÉèÁ½»¬¿éÅöºóÔڵ糡ÖÐËٶȼõΪÁãʱÇó³ö·¢ÉúµÄλÒÆS¼°Ê±¼ät£¬ÔÙ½«Ôڵ糡ÖÐÔ˶¯×Üʱ¼äÓë2
×ö±È½Ï£¬´Ó¶ø×ö³öÌÖÂÛ£®BµÄÄѵãÔÚÓÚ»¬¿é»¬¹ýCµãºó´ÓP¿×ÉÏÉýÓÖÇ¡ÄÜ´ÓQ¿×ÂäÏÂQת¹ýµÄ½Ç¶ÈÂú×ã¦È=¦Ð£¬¦Ð+2¦Ð=3¦Ð£¬¦Ð+4¦Ð=5¦Ð¡£¬¼´¿Éд³ö¦È=£¨2n+1£©¦Ð±í´ïʽ£¬È»ºó¦È=¦ØtÇó½â£®
T | 0 |
½â´ð£º½â£ºA¡¢£¨1£©Ð¡Îï¿éA´Óaµã»¬µ½bµã£¬¶¯Äܶ¨Àí-¦Ìmgl0=
m
-
m
µÃ
=
¼´Ð¡Îï¿éAµ½´ïbµã¼´½«ÓëСÎï¿éBÅöײǰµÄËÙ¶ÈvA´óСΪ
£¨2£©A¡¢BÅöײ£¬ÉèÅöºóËÙ¶ÈΪv£¬¶¯Á¿Êغ㶨ÂÉmvA=2mv
µÃ£ºv=
ABÒ»ÆðÔڵ糡¼õËÙÔ˶¯£¬ÉèËÙ¶ÈΪ0ʱ£¬Î»ÒÆΪS£¬¶¯Äܶ¨Àí-(qE+¦Ì.2mg)s=0-
.2m
½«E=
´úÈëµÃ£ºs=
¶ÔÏòÓÒ¼õËÙ¹ý³ÌÓÐ qE+¦Ì.2mg=2ma1 µÃ£ºa1=
g
¼õËÙΪ0ËùÓÃʱ¼äΪ£ºt1=
=
¶ÔÏò×ó¼ÓËÙ¹ý³ÌÓÐ qE-¦Ì.2mg=2ma2 µÃ£ºa2=
g
ÓÉs=
a2
¿ÉµÃµ½´ï×ó±ß½çbb'µÄʱ¼ä£ºt2=
ËùÒÔÔڵ糡ÖÐ×Ô˶¯Ê±¼ä£ºtm=t1+t2=
(
+1)=(
+1)T0 Òòtm£¼2T0£¬¼´Ð¡Îï¿éABÔÚbb'Óëcc'Ö®¼äÔ˶¯Ê±£¬Ò»Ö±Êܵ½µç³¡Á¦×÷Óã®
ÌÖÂÛÈçÏ£º
¢Ùµ±
£¼L¡Ü
ʱ£¬L¡Üs£¬AB¿ÉÒÔ´©¹ýµç³¡Óұ߽çcc'£¬Wf=-(¦Ìmgl0+¦Ì.2mgL)=-mg(L+
l0)
¢Úµ±
£¼L£¼l0ʱ£¬L£¾s£¬ABÔڵ糡ÏÈÏòÓÒ×ö¼õËÙÔ˶¯£¬ËٶȼõΪ0£¬ÓÉÓÚqE=2mg£¾f=mg£¬¼´AB×îºóÏò×ó¼ÓËÙ£¬´Ó×ó±ß½çbb'À뿪µç³¡£®ÔòWf=-(¦Ìmgl0+¦Ì.2mg.2s)=-
mgl0
¼´µ±
£¼L¡Ü
ʱWf=-(¦Ìmgl0+¦Ì.2mgL)=-mg(L+
l0)
µ±
£¼L£¼l0ʱ
=-
m
£¨3£©¢Ùµ±
£¼L¡Ü
£¬AB´©Ô½µç³¡µÄÓұ߽çcc'£¬Éèµ½´ïcµÄ¶¯ÄÜΪEKc
Óɶ¯Äܶ¨Àí£º-(¦Ì.2mg+qE)L=EKc-
.2m
µÃ£ºEkc=
mgl0-3mgL
¼´£º0¡ÜEkc£¼
mgl0
ÓÉÓÚ Ekc£¼2mgl0£¬²»Äܵ½´ïdµã£®
¢Úµ±
£¼L£¼l0ʱ£¬AB´Ó×ó±ß½çbb'À뿪µç³¡£¬²»Äܵ½´ïdµã£®
¼´
B£®½â£º
£¨1£©a¡¢b·Ö¿ªµÄ¹ý³Ì£¬Ñ¡ÏòÓÒ·½ÏòΪÕý·½Ïò£¬Óɶ¯Á¿ÊغãµÃmva-2mvb=0
½âÖ®µÃ£ºvb=
£¨2£©É軬¿éÖÁBµãʱËÙ¶ÈΪvB£¬¶Ô»¬¿éÓÉAµãµ½BµãÓ¦Óö¯Äܶ¨ÀíÓУº-¦Ìmg?5R=
m
-
m
¶Ô»¬¿éÔÚBµã£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÓУºFN-mg=m
½âµÃ£ºFN=9mg
ÓÉÅ£¶ÙµÚÈý¶¨ÂÉ¿ÉÖª£¬»¬¿éÔÚBµãʱ¶Ô¹ìµÀµÄѹÁ¦´óС
=FN=9mg ·½ÏòÊúÖ±ÏòÏ£®
£¨3£©»¬¿é´ÓBµã¿ªÊ¼Ô˶¯ºó»úеÄÜÊغ㣬É軬¿éµ½´ïP´¦Ê±ËÙ¶ÈΪvP£¬Ôò£º
m
=
m
+mg?2R
½âµÃ£ºvP=2
£¨4£©»¬¿é´©¹ýP¿×ºóÔٻص½Æ½Ì¨µÄʱ¼ä£ºt=
=4
ÒªÏëʵÏÖÌâÊö¹ý³Ì£¬ÐèÂú×㣺¦Øt=£¨2n+1£©¦Ð
½âµÃ£º¦Ø=
(n=0£¬1£¬2¡)
1 |
2 |
v | 2 A |
1 |
2 |
v | 2 0 |
µÃ
v | A |
6gl0 |
¼´Ð¡Îï¿éAµ½´ïbµã¼´½«ÓëСÎï¿éBÅöײǰµÄËÙ¶ÈvA´óСΪ
6
|
£¨2£©A¡¢BÅöײ£¬ÉèÅöºóËÙ¶ÈΪv£¬¶¯Á¿Êغ㶨ÂÉmvA=2mv
µÃ£ºv=
| ||
2 |
ABÒ»ÆðÔڵ糡¼õËÙÔ˶¯£¬ÉèËÙ¶ÈΪ0ʱ£¬Î»ÒÆΪS£¬¶¯Äܶ¨Àí-(qE+¦Ì.2mg)s=0-
1 |
2 |
v | 2 |
½«E=
2mg |
q |
l0 |
2 |
¶ÔÏòÓÒ¼õËÙ¹ý³ÌÓÐ qE+¦Ì.2mg=2ma1 µÃ£ºa1=
3 |
2 |
¼õËÙΪ0ËùÓÃʱ¼äΪ£ºt1=
v |
a1 |
|
¶ÔÏò×ó¼ÓËÙ¹ý³ÌÓÐ qE-¦Ì.2mg=2ma2 µÃ£ºa2=
1 |
2 |
ÓÉs=
1 |
2 |
t | 2 2 |
|
ËùÒÔÔڵ糡ÖÐ×Ô˶¯Ê±¼ä£ºtm=t1+t2=
|
| ||
3 |
| ||
3 |
ÌÖÂÛÈçÏ£º
¢Ùµ±
l0 |
4 |
l0 |
2 |
1 |
2 |
¢Úµ±
l0 |
2 |
3 |
2 |
¼´µ±
l0 |
4 |
l0 |
2 |
1 |
2 |
µ±
l0 |
2 |
W | f |
3 |
2 |
gl | 0 |
£¨3£©¢Ùµ±
l0 |
4 |
l0 |
2 |
Óɶ¯Äܶ¨Àí£º-(¦Ì.2mg+qE)L=EKc-
1 |
2 |
v | 2 |
µÃ£ºEkc=
3 |
2 |
¼´£º0¡ÜEkc£¼
3 |
4 |
ÓÉÓÚ Ekc£¼2mgl0£¬²»Äܵ½´ïdµã£®
¢Úµ±
l0 |
2 |
¼´
B£®½â£º
£¨1£©a¡¢b·Ö¿ªµÄ¹ý³Ì£¬Ñ¡ÏòÓÒ·½ÏòΪÕý·½Ïò£¬Óɶ¯Á¿ÊغãµÃmva-2mvb=0
½âÖ®µÃ£ºvb=
3 |
2 |
gR |
£¨2£©É軬¿éÖÁBµãʱËÙ¶ÈΪvB£¬¶Ô»¬¿éÓÉAµãµ½BµãÓ¦Óö¯Äܶ¨ÀíÓУº-¦Ìmg?5R=
1 |
2 |
v | 2 B |
1 |
2 |
v | 2 a |
¶Ô»¬¿éÔÚBµã£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÓУºFN-mg=m
| ||
R |
½âµÃ£ºFN=9mg
ÓÉÅ£¶ÙµÚÈý¶¨ÂÉ¿ÉÖª£¬»¬¿éÔÚBµãʱ¶Ô¹ìµÀµÄѹÁ¦´óС
F | ¡ä N |
£¨3£©»¬¿é´ÓBµã¿ªÊ¼Ô˶¯ºó»úеÄÜÊغ㣬É軬¿éµ½´ïP´¦Ê±ËÙ¶ÈΪvP£¬Ôò£º
1 |
2 |
v | 2 B |
1 |
2 |
v | 2 P |
½âµÃ£ºvP=2
gR |
£¨4£©»¬¿é´©¹ýP¿×ºóÔٻص½Æ½Ì¨µÄʱ¼ä£ºt=
| ||
g |
|
ÒªÏëʵÏÖÌâÊö¹ý³Ì£¬ÐèÂú×㣺¦Øt=£¨2n+1£©¦Ð
½âµÃ£º¦Ø=
(2n+1)¦Ð |
4 |
|
µãÆÀ£ºÇó½âÎïÀíÌâµÄ¹Ø¼ü»¹ÊÇÎïÀí¹ý³ÌµÄ·ÖÎö£¬¸ù¾Ý²»Í¬µÄÎïÀí¹ý³Ì½¨Á¢ÎïÀíÄ£ÐÍÁÐʽÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿