题目内容
如图所示,光滑的平行导轨P、Q相距L=1m,处在同一水平面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C两极板间距离d=10mm,定值电阻R1=R3=8Ω,R2=2Ω,导轨电阻不计. 磁感应强度B=0.4T的匀强磁场竖直向下穿过导轨面.当金属棒ab沿导轨向右匀速运动(开关S断开)时,电容器两极板之间质量m=1×10-14kg、带电量Q=-1×10-15C的微粒恰好静止不动;当S闭合时,微粒以加速度a=7m/s2向下做匀加速运动,取g=10m/s2,求:
(1)金属棒ab运动的速度多大?电阻多大?
(2)S闭合后,使金属棒ab做匀速运动的外力的功率多大?
(1) 3m/s,r=2W
(2) 0.18W
解析:
(1)带电微粒在电容器两极板间静止时,受向上的电场力和向下的重力作用而
平衡,则得到:mg=
求得电容器两极板间的电压
由于微粒带负电,可知上极板电势高.
由于S断开,R1上无电流,R2、R3串联部分两端总电压等于U1,电路中的感应
电流,即通过R2、R3的电流为:
由闭合电路欧姆定律,ab切割磁感线运动产生的感应电动势为E=U1+Ir ①
其中r为ab金属棒的电阻
当闭合S后,带电微粒向下做匀加速运动,根据牛顿第二定律,有:mg-U2q/d=ma
求得S闭合后电容器两极板间的电压:
这时电路中的感应电流为
I2=U2/R2=0.3/2A=0.15A
根据闭合电路欧姆定律有
②
将已知量代入①②求得E=1.2V,r=2W
又因E=BLv
∴v=E/(BL)=1.2/(0.4×1)m/s=3m/s
即金属棒ab做匀速运动的速度为3m/s,电阻r=2W ?
(2)S闭合后,通过ab的电流I2=0.15A,ab所受安培力F2=BI2L=0.4×1×0.15N=0.06N?ab以速度v=3m/s做匀速运动时,所受外力必与安培力F2大小相等、方向相反,即F=0.06N,方向向右(与v同向),可见外力F的功率为:
P=Fv=0.06×3W=0.18W