题目内容

15.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面的弹簧.在此过程中下面的木块移动的距离为(  )
A.$\frac{{{m_1}g}}{k_1}$B.$\frac{{{m_2}g}}{k_1}$C.$\frac{{{m_1}g}}{k_2}$D.$\frac{{{m_2}g}}{k_2}$

分析 开始时弹簧处于压缩状态,弹力等于两个木块的总重力,由胡克定律求出弹簧压缩的长度x1和x2.当上面的木块刚离开上面弹簧时,弹簧仍处于压缩状态,此时弹力等于下面木块的重力,再由胡克定律求出弹簧此时压缩的长度x2′,所以在这过程中下面木块移动的距离s2=x2-x2′.

解答 解:开始时:设上面弹簧压缩的长度x1下面弹簧压缩的长度x2,则有:
m1g=k1x1
m1g+m2g=k2x2
得到:${x}_{1}=\frac{{m}_{1}g}{{k}_{1}}$,${x}_{2}=\frac{({m}_{1}+{m}_{2})g}{{k}_{2}}$
当上面的木块刚离开上面弹簧时,设弹簧压缩的长度x2′,则有:
m2g=k2x2
得到:${x}_{2}′=\frac{{m}_{2}g}{{k}_{2}}$            
所以在这过程中下面木块移动的距离为:
${s}_{2}={x}_{2}-{x}_{2}′=\frac{{m}_{1}g}{{k}_{2}}$
故选:C

点评 本题考查处理含有弹簧的平衡问题能力,也可以直接由胡克定律根据$△x=\frac{F}{k}$求解形变量.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网