题目内容

19.如图所示,小球a的质量为小球b质量的一半,分别与轻弹簧A、B和轻绳相连接并处于平衡状态.轻弹簧A与竖直方向夹角为60°,轻弹簧A、B伸长量刚好相同,则下列说法中正确的是(  )
A.轻弹簧A、B的劲度系数之比为3:1
B.轻弹簧A、B的劲度系数之比为2:1
C.轻绳上拉力与轻弹簧A上拉力大小之比为2:1
D.轻绳上拉力与轻弹簧B上拉力大小之比为1:1

分析 先对球b分析,根据平衡条件求解弹簧B的弹力;再对球a、b整体受力分析,根据平衡条件求解细线的拉力和弹簧A的弹力,最后结合胡克定律分析弹簧A、B的劲度系数之比为.

解答 解:AB、对小球b受力分析,受重力和拉力,受力平衡,弹簧B的弹力:
FB=mbg;
对小球a、b整体受力分析,如图所示:

根据平衡条件,弹簧A的拉力:
FA=2(ma+mb)g,
mb=2ma
又由胡克定律F=kx,弹簧A、B伸长量刚好相同,轻弹簧A、B的劲度系数之比:
$\frac{{k}_{A}}{{k}_{B}}=\frac{{F}_{A}}{{F}_{B}}=\frac{3}{1}$
故A正确,B错误;
CD、根据平衡条件,有:
FB=mbg
FA=2(ma+mb)g
T=(ma+mb)gtan60°=$\sqrt{3}({m}_{a}+{m}_{b})g$
故轻绳上拉力与轻弹簧A上拉力大小之比为:
$\frac{T}{{F}_{A}}=\frac{\sqrt{3}}{2}$
轻绳上拉力与轻弹簧B上拉力大小之比为:
$\frac{T}{{F}_{B}}=\frac{3\sqrt{3}}{2}$
故C错误,D错误;
故选:A

点评 本题关键是采用整体法和隔离法灵活选择研究对象,然后根据平衡条件并结合合成法和胡克定律列式求解,不难.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网