题目内容

(A)如图所示,在边长为L=1m的等边三角形ACD区域内,存在磁感应强度为B=T、方向垂直纸面向外的匀强磁场,现有一束比荷=102C/kg带正电粒子,从AC边中点P以平行于CD边的某一速度射入磁场,粒子的重力可忽略不计.
(1)若粒子进入磁场时的速度大小为v=10m/s,求粒子在磁场中运动的轨道半径;
(2)若粒子能从AC边飞出磁场,求粒子在磁场中的运动时间;
(3)为使粒子能从CD边飞出磁场,粒子进入磁场时的速度大小应满足的条件?

【答案】分析:(1)根据牛顿第二定律,由洛伦兹力提供向心力,则即可求解;
(2)根据题意,作出运动轨迹,由几何关系,求出圆心角,算出运动的时间;
(3)粒子恰从CD边出磁场,根据几何关系,则可确定各自运动的半径.从而求出对应的速度,确定结果.
解答:解:(1)洛伦兹力提供向心力,则有:
解之得:
(2)从AC边出磁场如图

圆心角
则有运动的时间为:
 而T=
解之得:
t=
(3)设恰从CD边出磁场的轨迹半径为r1和r2
根据几何关系,则有
解得:
由几何关系,有
解得:


则v1=

得v2=50m/s
即12.5m/s<v<50m/s
答:(1)若粒子进入磁场时的速度大小为v=10m/s,则粒子在磁场中运动的轨道半径0.1732m;
(2)若粒子能从AC边飞出磁场,则粒子在磁场中的运动时间7.25×10-2s;
(3)为使粒子能从CD边飞出磁场,粒子进入磁场时的速度大小应满足的条件:12.5m/s<v<50m/s.
点评:考查洛伦兹力提供向心力,掌握牛顿第二定律的应用,学会几何关系在此应用,并形成解题套路.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网