题目内容

如图所示,摩托车做腾跃特技表演,沿曲面冲上高0.8m顶部水平高台,接着以v=3m/s水平速度离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A点切入光滑竖直圆弧轨道,并沿轨道下滑。A、B为圆弧两端点,其连线水平。已知圆弧半径为R=1.0m,人和车的总质量为180kg,特技表演的全过程中,阻力忽略不计。(计算中取g=10m/s2,sin53°=0.8,cos53°=0.6)。求:

(1)从平台飞出到A点,人和车运动的水平距离s;

(2)从平台飞出到达A点时速度及圆弧对应圆心角θ;

(3)人和车运动到达圆弧轨道A点时对轨道的压力;

(4)人和车运动到圆弧轨道最低点O速度vom/s此时对轨道的压力。

 

【答案】

(1)1.2m(2) 106°(3) 6580 N (4) 7740N

【解析】

试题分析:(1)由可得:       2分

(2)摩托车落至A点时,其竖直方向的分速度       1分

到达A点时速度

设摩托车落地时速度方向与水平方向的夹角为α,则

,即α=53°      2分

所以θ=2α=106°             1分

(3)   所以NA= 5580 N   1分

由牛顿第三定律可知,人和车在最低点O时对轨道的压力为6580 N     1分

(4)在o点:   所以N=7740N      2分

由牛顿第三定律可知,人和车在最低点O时对轨道的压力为7740N    1分

考点:动能定理;牛顿第三定律;运动的合成和分解;向心力;机械能守恒定律.

点评:该题考查了多个知识点的运用.对于不规则的曲线运动求速度,我们应该想到动能定理去求解.对于平抛运动规律和圆周运动最高点、最低点的分析,作为基础知识我们应该掌握.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网