题目内容

如图为某同学设计的速度选择装置,两根足够长的光滑导轨MM′和NN′间距为L与水平面成θ角,上端接滑动变阻器R,匀强磁场B0垂直导轨平面向上,金属棒ab质量为m恰好垂直横跨在导轨上.滑动变阻器R两端连接水平放置的平行金属板,极板间距为d,板长为2d,匀强磁场B垂直纸面向内.粒子源能发射沿水平方向不同速率的带电粒子,粒子的质量为m0,电荷量为q,ab棒的电阻为r,滑动变阻器的最大阻值为2r,其余部分电阻不计,不计粒子重力.
(1)ab棒静止未释放时,某种粒子恰好打在上极板中点P上,判断该粒子带何种电荷?该粒子的速度多大?
(2)调节变阻器使R=0.5r,然后释放ab棒,求ab棒的最大速度?
(3)当ab棒释放后达到最大速度时,若变阻器在r≤R≤2r范围调节,总有粒子能匀速穿过平行金属板,求这些粒子的速度范围?
分析:(1)粒子恰好打在上极板中点P上,由左手定则判断可知粒子带正电,根据几何知识求出粒子做圆周运动的半径,由牛顿第二定律求出粒子的速度.
(2)ab棒先向下做加速度减小的变加速运动,后做匀速运动,根据平衡条件和安培力公式求出最大速度.
(3)粒子能匀速穿过平行金属板,电场力与洛伦兹力平衡,则由平衡条件可求出电容器板间电压.由欧姆定律求出板间电压,联立即可求出这些粒子的速度范围.
解答:解:(1)由左手定则可知:该粒子带正电荷. 
粒子在磁场中做圆周运动,设半径为r,速度为v0
由几何关系有:r2=d2+(r-
d
2
)2
  ①
得:r=
5
4
d

粒子做匀速圆周运动,由牛顿第二定律得:Bqv0=
m0
v
2
0
r
  ②
得:v0=
5Bqd
4m0

(2)ab棒达到最大速度时做匀速运动:mgsinθ=B0IL  ③
对回路,由闭合电路欧姆定律:I=
B0Lv
0.5r+r
  ④
由上得:v=
3mgrsinθ
2
B
2
0
L2

(3)当ab棒达到最大速度时,设变阻器接入电路电阻为R,电压为U
由③式得:I=
mgsinθ
B0L
…④
对变阻器,由欧姆定律:U=IR  ⑤
极板电压也为U,粒子匀速运动:Bqv1=
U
d
q
  ⑥
由④⑤⑥得:v1=
mgRsinθ
BB0Ld

因为r≤R≤2r,故粒子的速度范围为:
mgrsinθ
BB0Ld
v1
2mgrsinθ
BB0Ld

答:
(1)ab棒静止未释放时,某种粒子恰好打在上极板中点P上,该粒子带正电荷,该粒子的速度是
5Bqd
4m0

(2)ab棒的最大速度是
3mgrsinθ
2
B
2
0
L2

(3)这些粒子的速度范围为:
mgrsinθ
BB0Ld
v1
2mgrsinθ
BB0Ld
点评:本题是导体在导轨上滑动与速度选择器的组合,运用电磁感应、磁场、电路等多种知识进行分析研究,综合性较强.
练习册系列答案
相关题目
(2007?广东)某研究性学习小组发现河水在缓慢流动时有一个规律,河中央流速最大,岸边速度几乎为零.为了研究河水流速与从岸边到中央距离的关系,小明同学设计了这样的测量仪器:如图甲所示,两端开口的“L”型玻璃管的水平部分置于待测的水流中,竖直部分露出水面,且露出水面部分的玻璃管足够长.当水流以速度 v 正对“L”型玻璃管的水平部分开口端匀速流动时,管内外液面的高度差为 h,且h 随水流速度的增大而增大.为了进一步研究水流速度v 与管内外水面高度差h的关系,该组同学进行了定量研究,得到了如下的实验数据,并根据实验数据得到了v-h 图象,如图丙所示.

v(m/s) 0 1.00 1.41 1.73 2.00 2.45 3.00 3.16
h(m) 0 0.05 0.10 0.15 0.20 0.30 0.45 0.50
(1)根据根据上表的数据和图丙中图象的形状,可猜想v和h之间的关系为
v2=20h
v2=20h
;为验证猜,请在图丁中确定纵轴所表示的物理量,并另作 图象,若该图象的形状为
直线
直线
,说明猜想正确.

(2)现利用上述测速器,由河流南岸开始,每隔1米测一次流速,得到数据如下表所示:
测试点距岸距离 x/m 0 1 2 3 4 5 6
管内外高度差   h/cm 0 0.8 3.2 7.2 12.8 20.0 28.8
相应的水流速度 v/ms-1
0
0
0.4
0.4
0.8
0.8
1.2
1.2
1.6
1.6
2.0
2.0
2.4
2.4
根据v和h之间的关系完成上表的最后一行,对比上表中的数据,可以看出河中水流速度 v 与从南岸到河流中央距离x的关系为:
v=0.4x
v=0.4x
某研究性学习小组发现河水在缓慢流动时有一个规律,河中央流速最大,岸边速度几乎为零.为了研究河水流速与从岸边到中央距离的关系,小明同学设计了这样的测量仪器:如图甲所示,两端开口的“L”型玻璃管的水平部分置于待测的水流中,竖直部分露出水面,且露出水面部分的玻璃管足够长.当水流以速度 v 正对“L”型玻璃管的水平部分开口端匀速流动时,管内外液面的高度差为 h,且h 随水流速度的增大而增大.为了进一步研究水流速度v 与管内外水面高度差h的关系,该组同学进行了定量研究,得到了如下的实验数据,并根据实验数据得到了v-h 图象,如图丙所示.
精英家教网
v(m/s) 0 1.00 1.41 1.73 2.00 2.45 3.00 3.16
h(m) 0 0.05 0.10 0.15 0.20 0.30 0.45 0.50
(1)根据根据上表的数据和图丙中图象的形状,可猜想v和h之间的关系为
 
;为验证猜想,图丁的纵坐标应设定为
 
,并另作图象,若该图象的形状为
 
,说明猜想正确.
(2)现利用上述测速器,由河流南岸开始,每隔1米测一次流速,得到数据如下表所示:
测试点距南岸距离 x/m 0 1 2 3 4 5 6 7
管内外液面高度差   h/cm 0 0.8 3.2 7.2 12.8 20.0 18.1 11.2
相应的水流速度 v/ms-1
分析对比上表中的数据,可以看出河中水流速度 v 与从观测点距离南岸的距离x的关系为:
 
.该河流中水流的最大流速约为
 
m/s.

(1) a.用螺旋测微器测量金属丝的直径,示数如图1所示,读数为_______________mm。

b.用游标为20分度的卡尺测量小球的直径,示数如图2所示,读数为__________________cm。

(2)在“研究匀变速直线运动”的实验中,用打点计时器记录纸带运动的时间,计时器所用电源的频率为50Hz,图为小车带动的纸带上记录的一些点,在每相邻两点间都有四个点未画出,按时间顺序取0.1.2.3.4.5六个点,用米尺量出1.2.3.4.5点到0点的距离如图所示.

a.由纸带可判定小车做______ 运动

b.若小车做匀变速直线运动,那么当打计数点3时小车的速度为________ m/s. 小车的加速度大小为________ m/s2 , 方向为________

(3)利用图示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度和下落高度。某班同学利用实验得到的纸带,设计了以下四种测量方案。

a.用刻度尺测出物体下落的高度,并测出下落时间,通过计算出瞬时速

b.用刻度尺测出物体下落的高度,并通过计算出瞬时速度.

c.根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,测算出瞬时速度,并通过计算出高度

d.用刻度尺测出物体下落的高度,根据做匀变速直线运动时纸带上某点的瞬时速度,等于这点前后相邻两点间的平均速度,算出瞬时速度v .

以上方案中只有一种正确,正确的是                 。(填入相应的字母)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网