ÌâÄ¿ÄÚÈÝ
6£®ÈçͼËùʾµç·ÖУ¬Èý¸öµç±í¾ùΪÀíÏëµç±í£¬±ÕºÏ¿ª¹ØSºó£¬A¡¢A1¡¢VÈý¸öµç±íµÄ¶ÁÊý·Ö±ðΪI¡¢I1¡¢U£¬µ±»¬Ïß±ä×èÆ÷»¬¶¯´¥µãPÏò×ó¶ËÒƶ¯Ò»Ð©£¬Èý¸öµç±í¶ÁÊýµÄ±ä»¯Á¿·Ö±ðΪ¡÷I¡¢¡÷I1¡¢¡÷U£¬Ôò´Ë¹ý³ÌÖУ¨¡¡¡¡£©A£® | I±äС£¬I1±äС£¬$\frac{I}{{I}_{1}}$²»±ä | B£® | I±äС£¬I1±äС£¬$\frac{¡÷I}{¡÷{I}_{1}}$²»±ä | ||
C£® | U±ä´ó£¬I±äС£¬$\frac{¡÷U}{¡÷I}$²»±ä | D£® | U±ä´ó£¬I1±äС£¬$\frac{¡÷U}{¡÷{I}_{1}}$²»±ä |
·ÖÎö ·ÖÎöµç·ͼ¿ÉÖª£º¶¨Öµµç×èR2Ó뻬¶¯±ä×èÆ÷²¢Áª£¬µçÁ÷±íA²â¸É·µçÁ÷£¬µçÁ÷±íA1²âͨ¹ý±ä×èÆ÷µÄµçÁ÷£¬µçѹ±íV²â·¶Ëµçѹ£»µ±»¬¶¯±ä×èÆ÷µÄ»¬Æ¬PÏò×óÒƶ¯Ê±£¬»¬¶¯±ä×èÆ÷½ÓÈëµç·µÄµç×è±ä´ó£¬¸ù¾Ý²¢Áªµç·µÄ¹æÂɺÍÅ·Ä·¶¨ÂÉ·ÖÎö£®
½â´ð ½â£ºµ±»¬¶¯±ä×èÆ÷µÄ»¬Æ¬PÏò×óÒƶ¯Ê±£¬»¬¶¯±ä×èÆ÷½ÓÈëµç·µÄµç×è±ä´ó£¬Íâµç·×ܵç×è±ä´ó£¬×ܵçÁ÷I±äС£¬µçÔ´µÄÄÚµçѹ±äС£¬Ôò·¶ËµçѹU±ä´ó£¬Í¨¹ýR2µÄµçÁ÷±ä´ó£¬Òò´ËI1±äС£®
¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉ U=E-IrµÃ£¬$\frac{¡÷U}{¡÷I}$=r£¬²»±ä£®
ÒòΪ¡÷I2=$\frac{¡÷U}{{R}_{2}}$£¬¡÷I=$\frac{¡÷U}{r}$£¬¡÷I=¡÷I1+¡÷I2£¬ËùÒÔÓС÷I1=¡÷I-¡÷I2=¡÷U£¨$\frac{1}{r}$-$\frac{1}{{R}_{2}}$£©
¿ÉµÃ $\frac{¡÷I}{¡÷{I}_{1}}$=$\frac{{R}_{2}}{{R}_{2}-r}$£¬²»±ä£®$\frac{¡÷U}{¡÷{I}_{1}}$=$\frac{{R}_{2}r}{{R}_{2}-r}$²»±ä£®¹ÊBCDÕýÈ·£¬A´íÎó£®
¹ÊÑ¡£ºBCD
µãÆÀ ±¾ÌâÊǵç·¶¯Ì¬±ä»¯·ÖÎöÎÊÌ⣬³£³£°´ÕÕ¡°¾Ö²¿¡úÕûÌå¡ú¾Ö²¿¡±µÄ˼··ÖÎö£®¶ÔÓÚµçѹ»òµçÁ÷±ä»¯Á¿µÄÑо¿£¬ÍùÍù¸ù¾Ý±ÕºÏµç·ŷķ¶¨Âɺʹ®Áª¡¢²¢ÁªµÄÌصãÁÐʽ·ÖÎö£®
A£® | ÔÚ´ÓMµãµ½NµãµÄ¹ý³ÌÖУ¬µçÊÆÄÜÖð½¥Ôö´ó | |
B£® | MµãµÄµçÊƵÍÓÚNµãµÄµçÊÆ | |
C£® | ¸Ãµç³¡¿ÉÄÜÊÇÓÉij¸ºµãµçºÉÐÎ³ÉµÄ | |
D£® | ´øµçÁ£×ÓÔÚMµãËùÊܵ糡Á¦Ð¡ÓÚÔÚNµãËùÊܵ糡Á¦ |