题目内容

一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多)。在圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为,B球的质量为,它们沿环形圆管顺时针运动,经过最低点时的速度为,设A球运动到最低点时,B球恰好运动到最高点,证明:若要此时两球作用于圆管的合力为零,那么,R与应满足的关系式是:


解析:

根据题意,想象出此时物理情意如图9-2。因为轨道对在最高点B的作用力方向可以向上也可以向下,故先对A球受力分析(见图),由牛顿第三定律可知,A球对圆管的压力向下。为使两球作用于圆管的合力为零,B球对圆管的作用力只能向上,不然合力就不会为零,所以轨道对B球的作用力方向,由牛顿第三定律可知是向下的。于是可以证明:

对A由所以

对B有

由机械能守恒定律得 

    代入

据题意有,则

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网