ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Ò»Äڱڹ⻬µÄ»·ÐÎϸԲ¹Ü¹Ì¶¨ÔÚˮƽ×ÀÃæÉÏ£¬»·ÄÚ¼ä¾àÏàµÈµÄÈýλÖô¦£¬·Ö±ðÓо²Ö¹µÄ´óСÏàͬµÄСÇòA¡¢B¡¢C£¬ÖÊÁ¿·Ö±ðΪm1=m£¬m2=m3=1.5m£¬ËüÃǵÄÖ±¾¶ÂÔСÓڹܵÄÖ±¾¶£¬Ð¡ÇòÇòÐĵ½Ô²»·ÖÐÐĵľàÀëΪR£¬ÏÖÈÃAÒÔ³õËÙ¶Èv0ÑعÜ˳ʱÕëÔ˶¯£¬Éè¸÷ÇòÖ®¼äµÄÅöײʱ¼ä¼«¶Ì£¬AºÍBÏàÅöûÓлúеÄÜËðʧ£¬BÓëCÏàÅöºóÄܽáºÏÔÚÒ»Æ𣬳ÆΪD£®Çó£º
£¨1£©AºÍBµÚÒ»´ÎÏàÅöºó¸÷×ÔµÄËٶȴóС£»
£¨2£©BºÍCÏàÅö½áºÏÔÚÒ»Æðºó¶Ô¹ÜÑØˮƽ·½ÏòµÄѹÁ¦´óС£»
£¨3£©AºÍBµÚÒ»´ÎÏàÅöºó£¬µ½AºÍDÏàÅö¾¹ýµÄʱ¼ä£®
£¨1£©AºÍBµÚÒ»´ÎÏàÅöºó¸÷×ÔµÄËٶȴóС£»
£¨2£©BºÍCÏàÅö½áºÏÔÚÒ»Æðºó¶Ô¹ÜÑØˮƽ·½ÏòµÄѹÁ¦´óС£»
£¨3£©AºÍBµÚÒ»´ÎÏàÅöºó£¬µ½AºÍDÏàÅö¾¹ýµÄʱ¼ä£®
·ÖÎö£º£¨1£©AºÍBÏàÅöʱûÓлúеÄÜËðʧ£¬×ñÊض¯Á¿ÊغãºÍ»úеÄÜÁ½´óÊغ㣬·Ö±ðÁгöÁ½´óÊغ㶨Âɵķ½³Ì£¬Çó³öAºÍBµÚÒ»´ÎÏàÅöºó¸÷×ÔµÄËٶȴóС£»
£¨2£©¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó³öBºÍCÏàÅö½áºÏÔÚÒ»ÆðµÄËٶȣ®Åöײºó¹Ü¶Ô½áºÏÌåµÄˮƽ·½ÏòµÄµ¯Á¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙÔ˶¯¶¨ÂÉÇó³öBºÍCÏàÅö½áºÏÔÚÒ»Æðºó¶Ô¹ÜÑØˮƽ·½ÏòµÄѹÁ¦´óС£»
£¨3£©Ð¡ÇòÅöײǰºó¶¼ÔÚÔ²¹ÜÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾Ý»¡³¤ÓëËٶȵıÈÖµ£¬Çó³öA¡¢BÅöºó£¬BÓëCÏàÅöËù¾ÀúµÄʱ¼ä£®
´ÓAºÍBµÚÒ»´ÎÏàÅöºó£¬µ½DÓëAÏàÅö£¬ADËùͨ¹ýµÄ×Ü»¡³¤Îª
£¬Á½Õß·³ÌÖ®ºÍµÈÓÚ×Ü»¡³¤£¬ÁÐʽÇó½âAºÍBµÚÒ»´ÎÏàÅöºó£¬µ½AºÍDÏàÅö¾¹ýµÄʱ¼ä£®
£¨2£©¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó³öBºÍCÏàÅö½áºÏÔÚÒ»ÆðµÄËٶȣ®Åöײºó¹Ü¶Ô½áºÏÌåµÄˮƽ·½ÏòµÄµ¯Á¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙÔ˶¯¶¨ÂÉÇó³öBºÍCÏàÅö½áºÏÔÚÒ»Æðºó¶Ô¹ÜÑØˮƽ·½ÏòµÄѹÁ¦´óС£»
£¨3£©Ð¡ÇòÅöײǰºó¶¼ÔÚÔ²¹ÜÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾Ý»¡³¤ÓëËٶȵıÈÖµ£¬Çó³öA¡¢BÅöºó£¬BÓëCÏàÅöËù¾ÀúµÄʱ¼ä£®
´ÓAºÍBµÚÒ»´ÎÏàÅöºó£¬µ½DÓëAÏàÅö£¬ADËùͨ¹ýµÄ×Ü»¡³¤Îª
4¦ÐR |
3 |
½â´ð£º½â£º£¨1£©ÉèA¡¢BÅöײºóËٶȷֱðΪv1¡¢v2£¬¸ù¾Ý¶¯Á¿ÊغãºÍ»úеÄÜÁ½ÊغãµÃ£º
mv0=mv1+1.5mv2
m
=
m
+
?1.5m
ÁªÁ¢½âµÃ£º
v1=-
v0£¨¸ººÅ±íʾAÇòÄæʱÕë·µ»Ø£©£¬v2=
v0
£¨2£©ÓÉÉÏÃæ½â´ð¿ÉÖª£¬BCÊ×ÏÈÒªÅöײ£¬ÉèBºÍCÏàÅö½áºÏÔÚÒ»ÆðºóËÙ¶ÈΪv3£¬ÔòÓɶ¯Á¿ÊغãÓУº
1.5mv2=3mv3
µÃ£ºv3=
v2=
v0
Éè¹Ü¶ÔÇòÑØˮƽ·½ÏòµÄѹÁ¦N£¬´ËÁ¦ÌṩDÇò×öÔÈËÙÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
N=3m?
=
£¬
ÓÉÅ£¶ÙµÚÈý¶¨ÂɵÃÖª£¬BºÍCÏàÅö½áºÏÔÚÒ»Æðºó¶Ô¹ÜÑØˮƽ·½ÏòµÄѹÁ¦´óС£º
N¡ä=N=
£»
£¨3£©A¡¢BÅöºó£¬B¾Ê±¼ät1ÓëCÏàÅö£¬Ôپʱ¼ät2£¬DÓëAÏàÅö
t1=
=
´ÓAºÍBµÚÒ»´ÎÏàÅöºó£¬µ½DÓëAÏàÅö£º
v3t2+|v1|?(t1+t2)=
µÃ£ºt2=
¡àAºÍBµÚÒ»´ÎÏàÅöºó£¬µ½AºÍDÏàÅö¾¹ýµÄʱ¼ätΪ£º
t=t1+t2=
´ð£º
£¨1£©AºÍBµÚÒ»´ÎÏàÅöºó¸÷×ÔµÄËٶȴóС·Ö±ðΪ
v0ºÍ
v0£»
£¨2£©BºÍCÏàÅö½áºÏÔÚÒ»Æðºó¶Ô¹ÜÑØˮƽ·½ÏòµÄѹÁ¦´óСΪ
£»
£¨3£©AºÍBµÚÒ»´ÎÏàÅöºó£¬µ½AºÍDÏàÅö¾¹ýµÄʱ¼äΪ
£®
mv0=mv1+1.5mv2
1 |
2 |
v | 2 0 |
1 |
2 |
v | 2 1 |
1 |
2 |
v | 2 2 |
ÁªÁ¢½âµÃ£º
v1=-
1 |
5 |
4 |
5 |
£¨2£©ÓÉÉÏÃæ½â´ð¿ÉÖª£¬BCÊ×ÏÈÒªÅöײ£¬ÉèBºÍCÏàÅö½áºÏÔÚÒ»ÆðºóËÙ¶ÈΪv3£¬ÔòÓɶ¯Á¿ÊغãÓУº
1.5mv2=3mv3
µÃ£ºv3=
1 |
2 |
2 |
5 |
Éè¹Ü¶ÔÇòÑØˮƽ·½ÏòµÄѹÁ¦N£¬´ËÁ¦ÌṩDÇò×öÔÈËÙÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
N=3m?
| ||
R |
12m
| ||
25R |
ÓÉÅ£¶ÙµÚÈý¶¨ÂɵÃÖª£¬BºÍCÏàÅö½áºÏÔÚÒ»Æðºó¶Ô¹ÜÑØˮƽ·½ÏòµÄѹÁ¦´óС£º
N¡ä=N=
12m
| ||
25R |
£¨3£©A¡¢BÅöºó£¬B¾Ê±¼ät1ÓëCÏàÅö£¬Ôپʱ¼ät2£¬DÓëAÏàÅö
t1=
2¦ÐR |
3v2 |
5¦ÐR |
6v0 |
´ÓAºÍBµÚÒ»´ÎÏàÅöºó£¬µ½DÓëAÏàÅö£º
v3t2+|v1|?(t1+t2)=
4¦ÐR |
3 |
µÃ£ºt2=
35¦ÐR |
18v0 |
¡àAºÍBµÚÒ»´ÎÏàÅöºó£¬µ½AºÍDÏàÅö¾¹ýµÄʱ¼ätΪ£º
t=t1+t2=
25¦ÐR |
9v0 |
´ð£º
£¨1£©AºÍBµÚÒ»´ÎÏàÅöºó¸÷×ÔµÄËٶȴóС·Ö±ðΪ
1 |
5 |
4 |
5 |
£¨2£©BºÍCÏàÅö½áºÏÔÚÒ»Æðºó¶Ô¹ÜÑØˮƽ·½ÏòµÄѹÁ¦´óСΪ
12m
| ||
25R |
£¨3£©AºÍBµÚÒ»´ÎÏàÅöºó£¬µ½AºÍDÏàÅö¾¹ýµÄʱ¼äΪ
25¦ÐR |
9v0 |
µãÆÀ£º±¾ÌâÖÐAB·¢ÉúµÄÊǵ¯ÐÔÅöײ£¬Ã»ÓлúеÄÜËðʧ£¬×ñÊØÔËÁ¿ÊغãºÍ¶¯ÄÜÊغ㣮´ËÌâÖл¹Éæ¼°ÏàÓöÎÊÌ⣬¸ù¾ÝλÒƹØϵÑо¿Ê±¼ä£¬Êdz£Óõķ½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿