ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÈçͼËùʾ£¬ÔÚ̽¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹ØϵµÄÑÝʾʵÑéÖУ¬Èô1¡¢2Á½¸öÏàͬµÄС³µËùÊÜÀÁ¦·Ö±ðΪF1¡¢F2£¬³µÖÐËù·ÅíÀÂëµÄÖÊÁ¿·Ö±ðΪm1¡¢m2£¬´ò¿ª¼Ð×Óºó¾¹ýÏàͬµÄʱ¼äÁ½³µµÄλÒÆ·Ö±ðΪx1¡¢x2£¬ÔòÔÚʵÑéÎó²îÔÊÐíµÄ·¶Î§ÄÚ£¬ÓÐ( )
A. µ±m1£½m2¡¢F1£½2F2ʱ£¬x1£½2x2
B. µ±m1£½m2¡¢F1£½2F2ʱ£¬x2£½2x1
C. µ±m1£½2m2¡¢F1£½F2ʱ£¬x1£½2x2
D. µ±m1£½2m2¡¢F1£½F2ʱ£¬x2£½2x1
¡¾´ð°¸¡¿A
¡¾½âÎö¡¿ÊÔÌâ·ÖÎö£ºÐ¡³µ×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËٶȡ¢ÓÉÔȱäËÙÔ˶¯µÄλÒƹ«Ê½¿ÉÒÔ·ÖÎö´ðÌ⣮
½â£ºA¡¢µ±m1=m2¡¢F1=2F2ʱ£¬ÓÉF=ma¿ÉÖª£¬a1=2a2£¬ÓÉx=at2¿ÉµÃ£ºx1=2x2£¬¹ÊAÕýÈ·£¬B´íÎó£»
C¡¢µ±m1=2m2¡¢F1=F2ʱ£¬a1=a2£¬ÓÉx=at2¿ÉµÃ£ºx2=2x1£¬¹ÊC´íÎó£¬DÕýÈ·£»
¹ÊÑ¡AD£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿