题目内容

【题目】如图所示,在矩形区域CDNM内有沿纸面向上的匀强电场,场强的大小E=1.5×105 V/m;在矩形区域MNGF内有垂直纸面向外的匀强磁场,磁感应强度大小B=0.2 T.已知CD=MN=FG=0.60 m,CM=MF=0.20 m.在CD边中点O处有一放射源,沿纸面向电场中各方向均匀地辐射出速率均为v0=1.0×106 m/s的某种带正电粒子,粒子质量m=6.4×10-27 kg,电荷量q=3.2×10-19 C,粒子可以无阻碍地通过边界MN进入磁场,不计粒子的重力.求:

(1)粒子在磁场中做圆周运动的半径;

(2)边界FG上有粒子射出磁场的范围长度;

(3)粒子在磁场中运动的最长时间.(后两问结果保留两位有效数字)

【答案】(1)0.2 m (2)0.43 m (3)2.1×10-7 s

【解析】

试题分析: (1)电场中由动能定理得:

qEd=mv2mv

由题意知d=0.20 m,代入数据得

v=2×106 m/s

带电粒子在磁场中做匀速圆周运动,

qBv=m

解得r==0.2 m.

(2)设粒子沿垂直于电场方向射入时,出电场时水平位移为x,则由平抛规律得:

解得x= m

离开电场时,sin θ1,θ1=30°.

由题意可知,PSMN,沿OC方向射出粒子到达P点,为左边界,垂直MN射出的粒子与边界FG相切于Q点,Q为右边界,QO″=r,轨迹如图.

范围长度为l=x+r=(+0.2)m≈0.43 m.

(3)T=,由分析可知,OO′方向射出的粒子运动时间最长,设FG长度为L

sin θ2,θ2=30°

带电粒子在磁场中运动的最大圆心角为120°,对应的最长时间为tmaxT=≈2.1×10-7 s

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网