ÌâÄ¿ÄÚÈÝ
4£®ÈçͼËùʾ£¬ÖÊÁ¿ÎªM=8kgµÄС³µ·ÅÔڹ⻬ˮƽÃæÉÏ£¬ÔÚС³µÓҶ˼ÓһˮƽºãÁ¦F=8N£®µ±Ð¡³µÏòÓÒÔ˶¯µÄËٶȴﵽv0=3m/s£¬ÔÚС³µÓÒ¶ËÇáÇá·ÅÉÏÒ»ÖÊÁ¿m=2kgµÄСÎï¿é£¬Îï¿éÓëС³µ¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.2£¬Îï¿éʼÖÕ²»À뿪С³µ£¬´ÓСÎï¿é·ÅÔÚС³µÉÏ¿ªÊ¼¼Æʱ£®£¨gÈ¡10m/s2£©Ç󣺣¨1£©t=0ʱ£¬Ð¡Îï¿éÓëС³µ¼ÓËÙ¶Èa1¡¢a2
£¨2£©t=2s£¬Ð¡Îï¿éÓëС³µ¼äĦ²ÁÉúÈÈQ
£¨3£©t=7s£¬Ð¡Îï¿éµÄ¶¯ÄÜEK£®
·ÖÎö £¨1£©Îï¿é·ÅÔÚС³µÉϺ󣬸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½âÎï¿éÓëС³µ¼ÓËٶȣ»
£¨2£©Éè¾¹ýʱ¼ät£¬Ð¡³µºÍÎï¿éËÙ¶ÈÏàµÈ£¬Çó³öt£¬¸ù¾ÝÔ˶¯Ñ§»ù±¾¹«Ê½Çó³öt=2s£¬Ð¡Îï¿éÓëС³µ¼äµÄÏà¶ÔλÒÆ£¬ÔÙ¸ù¾ÝQ=¦Ìmg¡÷xÇó½â£»
£¨3£©¹²ËÙºóÔÚFµÄ×÷ÓÃÏÂÒ»Æð¼ÌÐø¼ÓËÙ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö´ËʱµÄ¼ÓËٶȣ¬ÔÙ¸ù¾ÝÔ˶¯Ñ§»ù±¾¹«Ê½Çó³ö7sÄ©µÄËٶȣ¬¸ù¾Ý¶¯Äܱí´ïʽÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖª£¬
Îï¿é·ÅÔÚС³µÉϺ󣬼ÓËٶȴóСΪ${a}_{1}=\frac{¦Ìmg}{m}=¦Ìg=2m/{s}^{2}$£¬
С³µµÄ¼ÓËٶȴóСΪ${a}_{2}=\frac{F-¦Ìmg}{M}=0.5m/{s}^{2}$£¬
£¨2£©Éè¾¹ýʱ¼ät£¬Ð¡³µºÍÎï¿éËÙ¶ÈÏàµÈ£¬Ôò
a1t=v0+a2t
½âµÃ£ºt=2s£¬
Ïà¶ÔλÒÆ$¡÷x=£¨{v}_{0}t+\frac{1}{2}{a}_{2}{t}^{2}£©-\frac{1}{2}{a}_{1}{t}^{2}$
ÔòСÎï¿éÓëС³µ¼äĦ²ÁÉúÈÈQ=¦Ìmg¡÷x=12J
£¨3£©ÉèÇ°2sʱ¼äΪt1£¬ºó5sʱ¼äΪt2£¬¹²ËÙºóÔÚFµÄ×÷ÓÃÏÂÒ»Æð¼ÌÐø¼ÓËÙ£¬
¼ÓËÙ¶Èa=$\frac{F}{m+M}=\frac{8}{8+2}=0.8m/{s}^{2}$
7sÄ©µÄËÙ¶ÈΪv2=a1t1+a2t3=8m/s
Îï¿éµÄ¶¯ÄÜ${E}_{K}=\frac{1}{2}m{{v}_{3}}^{2}=64J$
´ð£º£¨1£©t=0ʱ£¬Ð¡Îï¿éÓëС³µ¼ÓËٶȷֱðΪ2m/s2ºÍ0.5m/s2£»
£¨2£©t=2s£¬Ð¡Îï¿éÓëС³µ¼äĦ²ÁÉúÈÈQΪ12J£»
£¨3£©t=7s£¬Ð¡Îï¿éµÄ¶¯ÄÜEKΪ64J£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§»ù±¾¹«Ê½µÄÖ±½ÓÓ¦Óã¬ÖªµÀСÎï¿éÓëС³µ¼äĦ²Á²úÉúµÄÈÈÁ¿µÈÓÚĦ²ÁÁ¦³ËÒÔÏà¶ÔλÒÆ£¬ÄѶÈÊÊÖУ®
A£® | 1s | B£® | 1.5s | C£® | 2s | D£® | 2.5s |
A£® | ÔÚÅ׳öµãÎïÌåµÄ»úеÄÜΪmgh | |
B£® | ÔÚ×î¸ßµãÎïÌåµÄ»úеÄÜΪ$\frac{1}{2}$mv${\;}_{0}^{2}$ | |
C£® | ÔÚ×î¸ßµãÎïÌåµÄ»úеÄÜΪ$\frac{1}{2}$mv${\;}_{0}^{2}$-mgh | |
D£® | ÎïÌå×ŵØʱµÄ»úеÄÜΪmgh+$\frac{1}{2}$mv${\;}_{0}^{2}$ |
A£® | $\frac{x}{2}$ | B£® | £¨$\sqrt{2}$-1£©x | C£® | $\frac{x}{4}$ | D£® | $\frac{\sqrt{2}x}{2}$ |
A£® | ¹ìµÀ°ë¾¶Ô½´óÏßËÙ¶ÈԽС | B£® | ¹ìµÀ°ë¾¶Ô½´óÏßËÙ¶ÈÔ½´ó | ||
C£® | ¹ìµÀ°ë¾¶Ô½´óÖÜÆÚÔ½´ó | D£® | ¹ìµÀ°ë¾¶Ô½´óÖÜÆÚԽС |