题目内容

【题目】如图所示,光滑水平面上有一质量M=1.0kg的小车,小车右端有一个质量m=0.90kg的滑块,滑块与小车左端的挡板之间用轻弹簧相连接,滑块与车面间的动摩擦因数μ=0.20,车和滑块一起以v1=10m/s的速度向右做匀速直线运动,此时弹簧为原长.一质量m0=0.10kg的子弹,以v0=50m/s的速度水平向左射入滑块而没有穿出,子弹射入滑块的时间极短.当弹簧压缩到最短时,弹簧被锁定(弹簧在弹性限度内),测得此时弹簧的压缩量d=0.50m,( g=10m/s2,√7=2.65),求:


(1)子弹与滑块刚好相对静止的瞬间,子弹与滑块共同速度的大小和方向;
(2)弹簧压缩到最短时,小车的速度大小和弹簧的弹性势能;
(3)如果当弹簧压缩到最短时,不锁定弹簧,则弹簧再次回到原长时,车的速度大小.

【答案】(1)4m/s ;与车方向相同;(2)7m/s;8J(3)4.35J

【解析】(1)设相对静止时共同速度为v,根据动量守恒定律
mv1+m0v0=(m0+m)v
解得:v=4m/s,方向与车方向相同向右.
(2)设弹簧压缩到最短时它们的共同速度为v′,根据动量守恒定律
Mv1+(m+m0)v=(M+m+m0)v′
解得:v′=7m/s,
设滑块与车摩擦产生的热为Q,弹簧的最大弹性势能为EP,根据能量守恒有:

Mv12+(m+m0)v2=(M+m+m0)v′2+Q+Ep
Q=μ(m+m)gd=1J,
解得:Ep=8J.
(3)设弹簧再次回到原长时,车的速度为v1,滑块(和子弹)的速度为v2,根据动量守恒定律
(M+m+m0)v′=Mv1+(m+m0)v2
根据能量守恒: (M+m0+m)v′2+Ep=Mv12+(m0+m)v22+Q,
解得:车的速度大小为v1=(7-)m/s=4.35m/s,
(另一解v1=(7+)m/s舍去).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网