ÌâÄ¿ÄÚÈÝ
12£®ÈçͼËùʾ£¬ÀíÏë±äѹÆ÷ÔÏßȦa¡¢bÁ½¶Ë½ÓÕýÏÒ½»±äµçѹu=220$\sqrt{2}$sin100¦Ðt£¨V£©£¬Ô¡¢¸±ÏßȦµÄÔÑÊý±Èn1£ºn2=10£º1£¬»¬¶¯±ä×èÆ÷RµÄ×î´ó×èÖµÊÇ8¦¸£¬¶¨Öµµç×èR1=4¦¸£¬R2=8¦¸£¬ËùÓеĵç±í¾ùΪÀíÏë±í£¬ÔÚ½«»¬¶¯±ä×èÆ÷´¥Í·´Ó×îÉ϶ËÒÆÖÁRÕýÖмäµÄ¹ý³ÌÖУ¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | µçÁ÷±íA1ʾÊýµÄ×î´óֵΪ0.2$\sqrt{2}$A | |
B£® | µçѹ±íV2ºÍµçÁ÷±íA2ʾÊýµÄ³Ë»ýÏÈÔö´óºó¼õС | |
C£® | µçѹ±íV1µÄʾÊýÏȱä´óºó±äС | |
D£® | ¶¨Öµµç×èR2ÏûºÄµÄµç¹¦ÂÊÒ»Ö±±ä´ó |
·ÖÎö ¸ù¾Ý±äѹÆ÷ÏßȦÁ½¶ËµçѹÓëÏßȦÔÑÊý±ÈÇó½âµçѹ±íV1µÄʾÊý£»ÔÚ½«»¬¶¯±ä×èÆ÷´¥Í·´Ó×îÉ϶ËÒÆÖÁRÕýÖмäµÄ¹ý³ÌÖУ¬»¬¶¯±ä×èÆ÷Éϲ¿·ÖºÍR1´®Áª£¬È»ºóºÍϲ¿·Ö²¢Áª£¬
µÈЧµç×èΪR£¬ÉèÉϲ¿·Öµç×èΪx£¬¸ù¾Ý²¢Áªµç·ÌصãµÃ£º$R=\frac{£¨4+x£©£¨8-x£©}{4+8}=\frac{£¨4+x£©£¨8-x£©}{12}$$¡Ü\frac{£¨\frac{4+x+8-x}{2}£©^{2}}{12}=3¦¸$£¬µ±ÇÒ½öµ±4+x=8-x£¬¼´x=2¦¸Ê±È¡µÈºÅ£¬ËùÒÔËæ×Å»¬¶¯´¥Í·ÏÂÒƹý³Ì£¬µÈЧµç×èÏȼõСºóÔö´ó£¬¸ù¾ÝÅ·Ä·¶¨ÂÉÅжϵçÁ÷µÄ±ä»¯£®
½â´ð ½â£ºA¡¢ÔÚ½«»¬¶¯±ä×èÆ÷´¥Í·´Ó×îÉ϶ËÒÆÖÁRÕýÖмäµÄ¹ý³ÌÖУ¬»¬¶¯±ä×èÆ÷Éϲ¿·ÖºÍR1´®Áª£¬È»ºóºÍϲ¿·Ö²¢Áª£¬
µÈЧµç×èΪR£¬ÉèÉϲ¿·Öµç×èΪx£¬¸ù¾Ý²¢Áªµç·ÌصãµÃ£º$R=\frac{£¨4+x£©£¨8-x£©}{4+8}=\frac{£¨4+x£©£¨8-x£©}{12}$$¡Ü\frac{£¨\frac{4+x+8-x}{2}£©^{2}}{12}=3¦¸$£¬
µ±ÇÒ½öµ±4+x=8-x£¬¼´x=2¦¸Ê±È¡µÈºÅ£¬ËùÒÔËæ×Å»¬¶¯´¥Í·ÏÂÒƹý³Ì£¬µÈЧµç×èÏȼõСºóÔö´ó£¬ÓÖÓÉÓëÔÑÊýºÍÊäÈëµçѹ²»±ä£¬ËùÒÔµçѹ±íV1µÄʾÊý²»±ä£¬¸ù¾ÝÅ·Ä·¶¨ÂÉ¿ÉÖª¸±ÏßȦµÄµçÁ÷ÏßÔö´óºó¼õС£¬
µ±x=2¦¸Ê±µçÁ÷×î´ó£¬${I}_{2}=\frac{{U}_{2}}{{R}_{2}+R}=\frac{22}{4+3}A=\frac{22}{7}A$£¬¸ù¾ÝµçÁ÷ÓëÔÑÊýµÄ¹Øϵ±È¿ÉÖª£¬µçÁ÷±íA1ʾÊýÏÈÔö´óºó¼õС£¬${I}_{1}=\frac{{n}_{2}}{{n}_{1}}{I}_{2}=\frac{1}{10}¡Á\frac{22}{7}A=\frac{11}{35}A$£¬¹ÊA´íÎó£»
B¡¢ÒòΪÀíÏë±äѹÆ÷ÔÏßȦa¡¢bÁ½¶ËËù¼Ó½»±äµçÁ÷²»±ä£¬µçÁ÷±íA1ʾÊýÏÈÔö´óºó¼õС£¬ËùÒÔÊäÈ빦ÂÊÏÈÔö´óºó¼õС£¬ÀíÏë±äѹÆ÷£¬Ã»ÓÐÄÜÁ¿Ëðʧ£¬ËùʾÊä³ö¹¦Âʼ´µçѹ±íV2ºÍµçÁ÷±íA2ʾÊýµÄ³Ë»ýÒ²Ó¦ÏÈÔö´óºó¼õС£¬¹ÊBÕýÈ·£»
C¡¢ÀíÏë±äѹÆ÷ÔÏßȦa¡¢bÁ½¶Ë½ÓÕýÏÒ½»±äµçѹu=220$\sqrt{2}$sin100¦Ðt£¨V£©£¬Ô¡¢¸±ÏßȦµÄÔÑÊý±Èn1£ºn2=10£º1£¬¸ù¾Ý$\frac{{U}_{1}}{{U}_{2}}=\frac{{n}_{1}}{{n}_{2}}$µÃ£º¸±ÏßȦÁ½¶ËµÄµçѹΪ£º${U}_{2m}=\frac{{n}_{2}}{{n}_{1}}{U}_{1m}=\frac{1}{10}¡Á220\sqrt{2}V=22\sqrt{2}V$µçѹ±íµÄʾÊýΪÓÐЧֵ£¬ËùÒÔµçѹ±íV1µÄʾÊýΪ£º${U}_{V1}={U}_{2}=\frac{22\sqrt{2}}{\sqrt{2}}V=22V$£¬ÓÉÓëÔÑÊýºÍÊäÈëµçѹ²»±ä£¬ËùÒÔµçѹ±íV1µÄʾÊý²»±ä£¬¹ÊC´íÎó£»D¡¢¸ù¾ÝAÏî·ÖÎö¿ÉÖª£¬Í¨¹ýR2µÄµçÁ÷ÏßÔö´óºó¼õС£¬¸ù¾ÝP=I2R¿ÉÖª¶¨Öµµç×èR2ÏûºÄµÄµç¹¦ÂÊÏÈÔö´óºó¼õС£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÊôÓÚ±äѹÆ÷µÄ¶¯Ì¬·ÖÎöÎÊÌ⣬˼·ÊÇÏȲ¿·Ö£¬ÔÚÕûÌ壬ÔÙ²¿·Ö£¬±¾ÌâµÄ¹Ø¼üÊǸù¾Ý²¢Áªµç·ÌصãµÃ£º$R=\frac{£¨4+x£©£¨8-x£©}{4+8}=\frac{£¨4+x£©£¨8-x£©}{12}$$¡Ü\frac{£¨\frac{4+x+8-x}{2}£©^{2}}{12}=3¦¸$£¬µ±ÇÒ½öµ±4+x=8-x£¬¼´x=2¦¸Ê±È¡µÈºÅ£¬ËùÒÔËæ×Å»¬¶¯´¥Í·ÏÂÒƹý³Ì£¬µÈЧµç×èÏȼõСºóÔö´ó£¬È»ºóÔÙ¸ù¾Ý±äѹÆ÷±äѹ¹Øϵ¡¢Å·Ä·¶¨ÂɵȽâ¾öÎÊÌ⣮
A£® | BÎÀÐDZÈAÎÀÐÇÔËÐÐÖÜÆÚС | |
B£® | AÎÀÐÇÔÚͼʾλÖüÓËÙºóÓпÉÄÜ»áײÉÏBÎÀÐÇ | |
C£® | AÎÀÐǵÄÔËÐÐËÙ¶ÈÒ»¶¨Ð¡ÓÚµØÇòµÄµÚÒ»ÓîÖæËÙ¶È | |
D£® | ¿ÉÒÔͨ¹ýAÎÀÐǵÄÔËÐÐÖÜÆÚºÍÍòÓÐÒýÁ¦³£Á¿¼ÆËã³öµØÇòµÄÖÊÁ¿ |
A£® | x1´¦µç³¡Ç¿¶È×î´ó | |
B£® | x2¡«x3¶ÎÊÇÔÈÇ¿µç³¡ | |
C£® | x1¡¢x2¡¢x3´¦µçÊƦÕ1¡¢¦Õ2¡¢¦Õ3µÄ¹ØϵΪ¦Õ1£¾¦Õ2£¾¦Õ3 | |
D£® | Á£×ÓÔÚO¡«x2¶Î×öÔȱäËÙÔ˶¯£¬x2¡«x3¶Î×öÔÈËÙÖ±ÏßÔ˶¯ |
A£® | ´µ³öµÄ·ÊÔíÅݳÉÇòÐÎ | |
B£® | Ó²±ÒÄÜƯ¸¡ÓÚË®ÃæÉÏ | |
C£® | µÎÈëË®ÖеĺìÄ«Ë®ºÜ¿ìÉ¢¿ª | |
D£® | ÔÚÍêȫʧÖصĻ·¾³Ï£¬ÈÛ»¯µÄ½ðÊôÄÜÊÕËõ³É±ê×¼µÄÇòÐÎ |
A£® | ÎïÌå´¦ÓÚƽºâ״̬ʱËùÊܵĺÏÁ¦Ò»¶¨ÎªÁã | |
B£® | ÎïÌåËùÊܵĺÏÁ¦ÎªÁãʱ²»Ò»¶¨´¦ÓÚƽºâ״̬ | |
C£® | ÎïÌåËùÊܵĺÏÁ¦ÎªÁãʱһ¶¨´¦ÓÚ¾²Ö¹×´Ì¬ | |
D£® | ÎïÌå´¦ÓÚ¾²Ö¹×´Ì¬Ê±ºÏÁ¦²»Ò»¶¨ÎªÁã |