题目内容

【题目】如图所示,轻质弹簧一端固定在水平面上O点的转轴上,另一端与一质量为m、套在粗糙固定直杆A处的小球(可视为质点)相连,直杆的倾角为30°,OA=OC,B为AC的中点,OB等于弹簧原长.小球从A处由静止开始下滑,初始加速度大小为aA , 第一次经过B处的速度为v,运动到C处速度为0,后又以大小为aC的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力.下列说法不正确的是( )

A.小球可以返回到出发点A处
B.弹簧具有的最大弹性势能为 mv2
C.撤去弹簧,小球可以在直杆上处于静止
D.aA﹣aC=g

【答案】B,D
【解析】解:A、B、设小球从A运动到B的过程克服摩擦力做功为Wf,AB间的竖直高度为h,小球的质量为m,弹簧具有的最大弹性势能为Ep

根据能量守恒定律,对于小球A到B的过程有:mgh+Ep= +Wf

A到C的过程有:2mgh+Ep=2Wf+Ep,解得:Wf=mgh,Ep=

小球从C点向上运动时,假设能返回到A点,则由能量守恒定律得:

Ep=2Wf+2mgh+Ep,该式违反了能量守恒定律,可知小球不能返回到出发点A处.故A错误,B正确.

C、设从A运动到C摩擦力的平均值为 ,AB=s,由Wf=mgh得:

s=mgssin30°

在B点,摩擦力 f=μmgcos30°,由于弹簧对小球有拉力(除B点外),小球对杆的压力大于μmgcos30°,所以 >μmgcos30°

可得 mgsin30°>μmgcos30°,因此撤去弹簧,小球不能在直杆上处于静止.故C错误.

D、根据牛顿第二定律得:

在A点有:Fcos30°+mgsin30°﹣f=maA

在C点有:Fcos30°﹣f﹣mgsin30°=maC

两式相减得:aA﹣aC=g.故D正确.

故选:BD

根据重力沿斜面向下的分力与最大静摩擦力的关系,判断出撤去弹簧,小球在直杆上不能处于静止.对小球A到B的过程和A到C的过程,分别根据能量守恒定律列式,可求得弹簧具有的最大弹性势能,由牛顿第二定律研究A、C两点的加速度,相比较可得到aA﹣aC=g.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网