题目内容

精英家教网如图所示,半径为r的圆筒,绕竖直中心轴OO′旋转,小物块a靠在圆筒的内壁上,它与圆筒内壁间的动摩擦因数为μ,现要使a不下落,则圆筒转动的角速度ω至少为(  )
A、
μgr
B、
μg
C、
g
r
D、
g
μr
分析:要使a不下落,筒壁对物体的静摩擦力必须与重力相平衡,由筒壁对物体的支持力提供向心力,根据向心力公式即可求解角速度的最小值.
解答:解:要使A不下落,则小物块在竖直方向上受力平衡,有:f=mg
当摩擦力正好等于最大摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力提供向心力,
根据向心力公式得:N=mω2r
而f=μN
联立以上三式解得:ω=
g
μr
,故D正确.
故选:D
点评:物体在圆筒内壁做匀速圆周运动,向心力是由筒壁对物体的支持力提供的.而物体放在圆盘上随着圆盘做匀速圆周运动时,此时的向心力是由圆盘的静摩擦力提供的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网