题目内容

13.如图所示,有一垂直于纸面向外的磁感应强度为B的有界匀强磁场(边界上有磁场),其边界为一边长为L的三角形,A、C、D为三角形的顶点.今有一质量为m、电荷量为+q的粒子(不计重力),以速度v=$\frac{\sqrt{3}qBL}{4m}$从AD边上某点P既垂直于AD边、又垂直于磁场的方向射人磁场,然后从CD边上某点Q(图中未画出)射出.若从P点射入的该粒子能从Q点射出,则(  )
A.|PD|≤$\frac{2+\sqrt{3}}{4}$LB.|PD|≤$\frac{1+\sqrt{3}}{4}$LC.|QD|≤$\frac{\sqrt{3}}{4}$LD.|QD|≤$\frac{1}{2}$L

分析 本题粒子的半径确定,圆心必定在经过AB的直线上,可将粒子的半圆画出来,然后移动三角形,获取AC边的切点以及从BC边射出的最远点.

解答 解:粒子在磁场中做匀速圆周运动的半径为 R=$\frac{mv}{qB}$.由题知:v=$\frac{\sqrt{3}qBL}{4m}$,解得:R=$\frac{\sqrt{3}}{4}$L.
如图所示,当圆心处于O1位置时,粒子正好从AC边切过,并与BC边过,因此入射点P1为离开B最远的点,满足|PD|≤$\frac{1}{2}$L+$\frac{\sqrt{3}}{4}$L,故A正确,B错误;
当圆心处于O2位置时,粒子从P2射入,打在DC边的Q点,由于此时Q点距离AB最远为圆的半径$\frac{\sqrt{3}}{4}$L,故QD最大,即|QD|≤$\frac{\sqrt{3}}{4}$L×$\frac{2}{\sqrt{3}}$=$\frac{1}{2}$L,故C错误,D正确.
故选:AD.

点评 考查带电粒子在匀强磁场中的匀速圆周运动.由于运动轨迹的对应的半径不变,所以当从不同的位置进入时,出磁场位置也不同,故当轨迹刚与BC相切或与BC垂直相交,是本题考虑的两种临界状态,也是解题的突破口.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网