ÌâÄ¿ÄÚÈÝ
9£®ÈçͼΪһ¸öÀûÓõ糡¡¢´Å³¡¶ÔµçºÉÔ˶¯¿ØÖƵÄÄ£ÐÍͼ£®ÔÚÇøÓòIÖеÄP1¡¢P2·Ö±ðΪ¼ÓËٵ糡µÄÕý¸ºÁ½¼«°å£¬P2ÖÐÑëÓÐÒ»¿×£¬Á½¼«°åÊúֱƽÐÐÕý¶Ô·ÅÖ㬿ªÊ¼¼ÓÓдóСΪUµÄµçѹ£»ÔÚÇøÓò¢òÖÐÓÐÒ»ÒÔl¼°l¡äΪ±ß½çµÄÊúÖ±ÏòϵÄÔÈÇ¿µç³¡£»ÔÚÇøÓò¢óÖÐÓÐÒ»ÒÔl¡äΪ×ó±ß½ç´¹Ö±ÓÚÖ½ÃæµÄÔÈÇ¿´Å³¡£®ÏÖÓÐÒ»´øÕýµçµÄÁ£×Ó£¨ÖØÁ¦²»¼Æ£©ÖÊÁ¿Îªm£¬µçÁ¿Îªq£¬´Ó¼«°åP1Óɾ²Ö¹¿ªÊ¼ÑØÖÐÖáÏßOO¡ä·½Ïò½øÈëÇøÓò¢ò£¬´Ó±ß½çl¡äµÄPµãÀ뿪ÇøÓò¢ò£¬´ËʱËÙ¶ÈÓëˮƽ·½Ïò¼Ð½Ç¦Á=30¡ã£®Èô½«P1¡¢P2Á½¼«°åËù¼Óµçѹ¸ÄΪU¡ä£¬ÆäËüÌõ¼þ²»±ä£¬Á£×ÓÔò´Ó±ß½çl¡äµÄQµãÀ뿪ÇøÓò¢ò£¬´ËʱËÙ¶ÈÓëˮƽ·½Ïò¼Ð½Ç¦Â=60¡ã£®ÒÑÖªPQÁ½µãµÄ¾àÀëΪd£®£¨1£©ÇóU¡äºÍÇøÓò¢òÖе糡ǿ¶ÈEµÄ´óС£»
£¨2£©ÈôÁ½´Î½øÈëÇøÓò¢óµÄÁ£×Ó¾ùÄܻص½±ß½çl¡äÉÏͬһµã£¬ÇóÇøÓò¢óÖдų¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óСºÍ·½Ïò£®£¨´Å³¡·¶Î§×ã¹»´ó£©
·ÖÎö £¨1£©µçºÉÔÚÇøÓò¢ñÖб»¼ÓËÙ£¬ÔÚÇøÓò¢òÖÐ×öÀàƽÅ×Ô˶¯£¬ÔËÓÃÔ˶¯µÄ·Ö½â·¨£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½ºÍ¶¯Äܶ¨ÀíµÃµ½¼ÓËÙµçѹUÓëµçºÉÔÚÇøÓò¢òÖÐÆ«Ïò½ÇµÄ¹Øϵʽ£¬ÔÙÓñÈÀý·¨Çó³öU¡ä£®PQÁ½µãµÄ¾àÀëµÈÓÚµçºÉÔÚÇøÓò¢òÖк¬Æ«ÒÆÁ¿£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½áºÏÇó³öE£®
£¨2£©µçºÉÔÚÇøÓò¢óÖÐÖ»ÊÜÂåÂ××ÈÁ¦×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɺͼ¸ºÎ¹ØϵÇó³öB£®¸ù¾ÝÁ½´Î¹ì¼£Ïҵij¤¶È´óС£¬·ÖÎöµçºÉÐýתµÄ·½Ïò£¬ÅжÏBµÄ·½Ïò£®
½â´ð ½â£º£¨1£©ÉèµçºÉ¾U¼ÓËÙÖ®ºóµÄËÙ¶ÈΪv0£¬³ö±ß½çµÄËÙ¶ÈΪv£¬ÊúÖ±·½ÏòµÄÆ«ÒÆÁ¿Îªy£¬ÊúÖ±·ÖËÙ¶ÈΪvy£¬ËÙ¶ÈÆ«Ïò½ÇΪ¦È£¬ÇøÓò¢òµÄ¿í¶ÈΪL£¬´©¹ýÇøÓò¢òµÄʱ¼äΪt£¬¼ÓËÙ¶ÈΪa£®
ÇøÓòIIÖÐÓÐ
L=v0t ¢Ù
y=$\frac{1}{2}$vyt ¢Ú
tan¦È=$\frac{{v}_{y}}{{v}_{0}}$ ¢Û
½âµÃy=$\frac{L}{2}$tan¦È ¢Ü
µç³¡¼ÓËÙÖÐÓɶ¯Äܶ¨Àí£ºqU=$\frac{1}{2}$m${v}_{0}^{2}$ ¢Ý
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ£ºEq=ma£¬
µÃy=$\frac{1}{2}$at2=$\frac{1}{2}\frac{qE}{m}{t}^{2}$=$\frac{1}{2}\frac{qE{L}^{2}}{m{v}_{0}^{2}}$=$\frac{qE{L}^{2}}{4qU}$ ¢Þ
Óɢܢ޽âµÃ£ºU=$\frac{EL}{2tan¦È}$ ¢ß
ËùÒÔ´úÈëÊýÖµµÃ£º$\frac{U¡ä}{U}$=$\frac{tan¦Á}{tan¦Â}$=$\frac{1}{3}$
½âµÃ£ºU¡ä=$\frac{1}{3}$U
µÚ¶þ´ÎÆ«ÒÆÁ¿y2ÓëµÚÒ»´ÎÆ«ÒÆÁ¿y1Ö®²îΪµÃ£ºy2-y1=d
½áºÏ¢ÜµÃ£º
$\frac{L}{2}$tan¦Â-$\frac{L}{2}$tan¦Á=d
½âµÃL=$\sqrt{3}$d
Óɢߵ㬵ÚÒ»´ÎÈëÉäʱU=$\frac{EL}{2tan¦Á}$£¬½âµÃ£ºE=$\frac{2U}{3d}$
£¨2£©Éè½øÈë´Å³¡Ê±£¬Á£×Ó×öÔ²ÖÜÔ˶¯µÄ°ë¾¶ÎªR
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ£ºqvB=m$\frac{{v}^{2}}{R}$
¼°£ºv0=vcos¦È
½âµÃ£ºR=$\frac{\sqrt{2q{U}_{m}}}{qBcos¦È}$
´úÈëÊýÖµµÃµ½£¬µÚÒ»´ÎÁ£×ӵİ뾶R1ºÍµÚ¶þ´ÎÁ£×ӵİ뾶R2¹ØϵΪ£ºR1=R2
ÔÙÓÉÁ½ÏÒ³¤Ö®²îΪd
¿ÉµÃ£º2R1cos¦Á-2R2cos¦Â=d
½âµÃ£ºB=$\frac{6-2\sqrt{3}}{3d}\sqrt{\frac{2mU}{q}}$
ÓɵÚÒ»´ÎÏÒ³¤´óÓÚµÚ¶þ´ÎÏÒ³¤¿ÉÖªÔ²ÐÄλÓÚÉä³öµãÏ·½£¬ÓÉ×óÊÖ¶¨ÔòÅжϵÃÖª£¬BµÄ·½Ïò´¹Ö±Ö½ÃæÏòÍ⣮
´ð£º£¨1£©U¡ä´óСΪ$\frac{1}{3}$U£¬ÇøÓòIIÖе糡ǿ¶ÈE=$\frac{2U}{3d}$£®
£¨2£©ÇøÓòIIIÖдų¡µÄ´Å¸ÐӦǿ¶ÈB=$\frac{6-2\sqrt{3}}{3d}\sqrt{\frac{2mU}{q}}$£¬·½Ïò´¹Ö±Ö½ÃæÏòÍ⣮
µãÆÀ ±¾ÌâÊǵ糡¼ÓËÙ¡¢Æ«×ªºÍ´Å³¡ÖÐÔ²ÖÜÔ˶¯µÄ×ۺϣ®µç³¡¼ÓËÙ¸ù¾Ý¶¯Äܶ¨ÀíÇóµçºÉµÄËٶȣ¬µç³¡ÖÐƫתÔËÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½â·¨Ñо¿£¬´Å³¡Öиù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÑо¿¹ì¼£°ë¾¶¶¼Êdz£¼ûµÄ˼·£®
A£® | Ö¸ÄÏÕë¿ÉÒÔ½ö¾ßÓÐÒ»¸ö´Å¼« | |
B£® | Ö¸ÄÏÕëÄܹ»Ö¸ÏòÄϱ±£¬ËµÃ÷µØÇò¾ßÓдų¡ | |
C£® | Ö¸ÄÏÕëµÄÖ¸Ïò²»»áÊܵ½¸½½üÌú¿éµÄ¸ÉÈÅ | |
D£® | ÔÚÖ¸ÄÏÕëÕýÉÏ·½¸½½üÑØÖ¸Õë·½Ïò·ÅÖÃÒ»Ö±µ¼Ïߣ¬µ¼ÏßͨµçʱָÄÏÕ벻ƫת |
A£® | µçÔ´µÄ×ܹ¦ÂÊÒ»¶¨¼õС | B£® | µçÔ´Á½¶Ëµçѹһ¶¨¼õС | ||
C£® | R1µÄ¹¦ÂÊÒ»¶¨Ôö´ó | D£® | R2µÄ¹¦ÂÊÒ»¶¨¼õС |
A£® | ÔÂÇòÖÊÁ¿Îª$\frac{32{¦Ð}^{2}{R}^{3}}{G{T}^{2}}$ | B£® | ÔÂÇò±íÃæÖØÁ¦¼ÓËÙ¶ÈΪ$\frac{8{¦Ð}^{2}}{{T}^{2}}$R | ||
C£® | ÔÂÇòÃܶÈΪ$\frac{3¦Ð}{G{T}^{2}}$ | D£® | ÔÂÇòµÚÒ»ÓîÖæËÙ¶ÈΪ$\frac{4¦ÐR}{T}$ |
A£® | СÇò¿ÉÄÜ´øÕýµç | |
B£® | СÇò×öÔÈËÙÔ²ÖÜÔ˶¯µÄ°ë¾¶Îªr=$\frac{1}{B}$$\sqrt{\frac{2UE}{g}}$ | |
C£® | ÈôµçѹUÔö´ó£¬ÔòСÇò×öÔÈËÙÔ²ÖÜÔ˶¯µÄÖÜÆÚ±ä´ó | |
D£® | ÔÈÇ¿µç³¡·½ÏòÒ»¶¨ÊúÖ±ÏòÏ |
A£® | ÉÏÉý¹ý³ÌÖÐÎïÌåµÄ»úеÄÜÔö¼Óm£¨g-a£©h | |
B£® | ÉÏÉý¹ý³ÌÖкÏÍâÁ¦¶ÔÎïÌå×ö¹¦mah | |
C£® | ÉÏÉý¹ý³ÌÖÐÎïÌåµÄÖØÁ¦ÊÆÄÜÔö¼Óm£¨a+g£©h | |
D£® | ÉÏÉý¹ý³ÌÖÐÎïÌå¿Ë·þÖØÁ¦×ö¹¦mgh |