ÌâÄ¿ÄÚÈÝ
£¨1£©ÏÂÁйØÓÚÔ×ÓºÍÔ×Ӻ˵Ä˵·¨ÕýÈ·µÄÊÇ
A£®¦ÂË¥±äÏÖÏó˵Ã÷µç×ÓÊÇÔ×Ӻ˵Ä×é³É²¿·Ö
B£®²£¶ûÀíÂ۵ļÙÉèÖ®Ò»ÊÇÔ×ÓÄÜÁ¿µÄÁ¿×Ó»¯
C£®·ÅÉäÐÔÔªËصİëË¥ÆÚËæζȵÄÉý¸ß¶ø±ä¶Ì
D£®±È½áºÏÄÜԽС±íʾÔ×ÓºËÖеĺË×Ó½áºÏµÃÔ½ÀιÌ
£¨2£©Ð¡ÇòAºÍBµÄÖÊÁ¿·Ö±ðΪmAºÍmB ÇÒmA£¾mBÔÚij¸ß¶È´¦½«AºÍBÏȺó´Ó¾²Ö¹ÊÍ·Å£®Ð¡ÇòAÓëˮƽµØÃæÅöײºóÏòÉϵ¯»Ø£¬ÔÚÊÍ·Å´¦µÄÏ·½ÓëÊͷųõ¾àÀëΪHµÄµØ·½Ç¡ºÃÓëÕýÔÚÏÂÂäµÄСÇòB·¢ÉúÕý´±£¬ÉèËùÓÐÅöײ¶¼Êǵ¯ÐԵģ¬Åöײʱ¼ä¼«¶Ì£®ÇóСÇòA¡¢BÅöײºóBÉÏÉýµÄ×î´ó¸ß¶È£®
A£®¦ÂË¥±äÏÖÏó˵Ã÷µç×ÓÊÇÔ×Ӻ˵Ä×é³É²¿·Ö
B£®²£¶ûÀíÂ۵ļÙÉèÖ®Ò»ÊÇÔ×ÓÄÜÁ¿µÄÁ¿×Ó»¯
C£®·ÅÉäÐÔÔªËصİëË¥ÆÚËæζȵÄÉý¸ß¶ø±ä¶Ì
D£®±È½áºÏÄÜԽС±íʾÔ×ÓºËÖеĺË×Ó½áºÏµÃÔ½ÀιÌ
£¨2£©Ð¡ÇòAºÍBµÄÖÊÁ¿·Ö±ðΪmAºÍmB ÇÒmA£¾mBÔÚij¸ß¶È´¦½«AºÍBÏȺó´Ó¾²Ö¹ÊÍ·Å£®Ð¡ÇòAÓëˮƽµØÃæÅöײºóÏòÉϵ¯»Ø£¬ÔÚÊÍ·Å´¦µÄÏ·½ÓëÊͷųõ¾àÀëΪHµÄµØ·½Ç¡ºÃÓëÕýÔÚÏÂÂäµÄСÇòB·¢ÉúÕý´±£¬ÉèËùÓÐÅöײ¶¼Êǵ¯ÐԵģ¬Åöײʱ¼ä¼«¶Ì£®ÇóСÇòA¡¢BÅöײºóBÉÏÉýµÄ×î´ó¸ß¶È£®
·ÖÎö£º£¨1£©¦ÂË¥±äµÄµç×ÓÀ´×ÔÓÚÔ×Ӻˣ¬µ«µç×Ó²»ÊÇÔ×Ӻ˵Ä×é³É²¿·Ö£»²£¶ûÀíÂÛÌá³öÁËÄÜÁ¿µÄÁ¿×Ó»¯¡¢¹ìµÀµÄÁ¿×Ó»¯£»°ëË¥ÆÚÓëζÈÎ޹أ¬ÓÉÔ×ÓºËÄÚ²¿ÒòËؾö¶¨£»±È½áºÏÄÜÔ½´óµÄÔ×Ӻˣ¬½áºÏÔ½Àι̣®
£¨2£©Ð¡ÇòA·´µ¯µ½H¸ß¶ÈºÍСÇòBÏÂÂäµ½H¸ß¶ÈµÄËٶȴóСÏàµÈ£¬·½ÏòÏà·´£®Åöײ¶¼Êǵ¯ÐԵģ¬¶¯Á¿Êغ㣬ÄÜÁ¿Êغ㣮¸ù¾Ý¶¯Á¿Êغ㶨Âɼ°ÄÜÁ¿ÊغãÇó³öÅöºóСÇòA¡¢BµÄËٶȴóС£¬´Ó¶ø¸ù¾ÝÔ˶¯Ñ§¹«Ê½Çó³öBÉÏÉýµÄ¸ß¶È£®
£¨2£©Ð¡ÇòA·´µ¯µ½H¸ß¶ÈºÍСÇòBÏÂÂäµ½H¸ß¶ÈµÄËٶȴóСÏàµÈ£¬·½ÏòÏà·´£®Åöײ¶¼Êǵ¯ÐԵģ¬¶¯Á¿Êغ㣬ÄÜÁ¿Êغ㣮¸ù¾Ý¶¯Á¿Êغ㶨Âɼ°ÄÜÁ¿ÊغãÇó³öÅöºóСÇòA¡¢BµÄËٶȴóС£¬´Ó¶ø¸ù¾ÝÔ˶¯Ñ§¹«Ê½Çó³öBÉÏÉýµÄ¸ß¶È£®
½â´ð£º½â£º£¨1£©A¡¢¦ÂË¥±äµÄµç×ÓÊÇÔ×ÓºËÖеÄÖÐ×Óת±äΪһ¸öÖÊ×ÓºÍÒ»¸öµç×Ó£¬µç×ÓÀ´×ÔÔ×Ӻˣ¬µ«²»ÊÇÔ×Ӻ˵Ä×é³É²¿·Ö£®¹ÊA´íÎó£®
B¡¢²£¶ûÀíÂÛÌá³öÁËÄÜÁ¿µÄÁ¿×Ó»¯¡¢¹ìµÀµÄÁ¿×Ó»¯£®¹ÊBÕýÈ·£®
C¡¢·ÅÉäÐÔÔªËصİëË¥ÆÚÓëÆäËù´¦µÄÎïÀí»·¾³¼°»¯Ñ§×´Ì¬Î޹أ¬ÓÉÔ×ÓºËÄÚ²¿ÒòËؾö¶¨£®¹ÊC´íÎó£®
D¡¢±È½áºÏÄÜÔ½´ó±íʾÔ×ÓºËÖеĺË×Ó½áºÏµÃÔ½Àι̣®¹ÊD´íÎó£®
¹ÊÑ¡B£®
£¨2£©¸ù¾ÝÌâÒ⣬ÓÉÔ˶¯Ñ§¹æÂÉ¿ÉÖª£¬Ð¡ÇòAÓëBÅöײǰµÄËٶȴóСÏàµÈ£¬Éè¾ùΪv0£¬
ÓÉ»úеÄÜÊغãÓÐmAgH=
mA
¢Ù
ÉèСÇòAÓëBÅöײºóµÄËٶȷֱðΪv1ºÍv2£¬ÒÔÊúÖ±ÏòÉÏ·½ÏòΪÕý£¬Óɶ¯Á¿ÊغãÓÐmAv0+mB£¨-v0£©=mAv1+mBv2¢Ú
ÓÉÓÚÁ½ÇòÅöײ¹ý³ÌÖÐÄÜÁ¿Êغ㣬¹Ê
mA
+
mB
=
mA
+
mB
¢Û
ÁªÁ¢¢Ú¢ÛʽµÃ£ºv2=
v0¢Ü
ÉèСÇòBÄÜÉÏÉýµÄ×î´ó¸ß¶ÈΪh£¬ÓÉÔ˶¯Ñ§¹«Ê½ÓÐh=
¢Ý
Óɢ٢ܢÝʽµÃh=(
)2H¢Þ
´ð£ºÐ¡ÇòA¡¢BÅöײºóBÉÏÉýµÄ×î´ó¸ß¶ÈΪh=(
)2H£®
B¡¢²£¶ûÀíÂÛÌá³öÁËÄÜÁ¿µÄÁ¿×Ó»¯¡¢¹ìµÀµÄÁ¿×Ó»¯£®¹ÊBÕýÈ·£®
C¡¢·ÅÉäÐÔÔªËصİëË¥ÆÚÓëÆäËù´¦µÄÎïÀí»·¾³¼°»¯Ñ§×´Ì¬Î޹أ¬ÓÉÔ×ÓºËÄÚ²¿ÒòËؾö¶¨£®¹ÊC´íÎó£®
D¡¢±È½áºÏÄÜÔ½´ó±íʾÔ×ÓºËÖеĺË×Ó½áºÏµÃÔ½Àι̣®¹ÊD´íÎó£®
¹ÊÑ¡B£®
£¨2£©¸ù¾ÝÌâÒ⣬ÓÉÔ˶¯Ñ§¹æÂÉ¿ÉÖª£¬Ð¡ÇòAÓëBÅöײǰµÄËٶȴóСÏàµÈ£¬Éè¾ùΪv0£¬
ÓÉ»úеÄÜÊغãÓÐmAgH=
1 |
2 |
v | 2 0 |
ÉèСÇòAÓëBÅöײºóµÄËٶȷֱðΪv1ºÍv2£¬ÒÔÊúÖ±ÏòÉÏ·½ÏòΪÕý£¬Óɶ¯Á¿ÊغãÓÐmAv0+mB£¨-v0£©=mAv1+mBv2¢Ú
ÓÉÓÚÁ½ÇòÅöײ¹ý³ÌÖÐÄÜÁ¿Êغ㣬¹Ê
1 |
2 |
v | 2 0 |
1 |
2 |
v | 2 0 |
1 |
2 |
v | 2 1 |
1 |
2 |
v | 2 2 |
ÁªÁ¢¢Ú¢ÛʽµÃ£ºv2=
3mA-mB |
mA+mB |
ÉèСÇòBÄÜÉÏÉýµÄ×î´ó¸ß¶ÈΪh£¬ÓÉÔ˶¯Ñ§¹«Ê½ÓÐh=
| ||
2g |
Óɢ٢ܢÝʽµÃh=(
3mA-mB |
mA+mB |
´ð£ºÐ¡ÇòA¡¢BÅöײºóBÉÏÉýµÄ×î´ó¸ß¶ÈΪh=(
3mA-mB |
mA+mB |
µãÆÀ£º±¾ÌâµÚһСÌ⿼²éÁËÄܼ¶¡¢°ëË¥ÆڵȻù±¾¸ÅÄµÚ¶þСÌâ×ÛºÏÔËÓÃÁ˶¯Á¿Êغ㶨ÂÉ¡¢»úеÄÜÊغ㶨ÂÉ¡¢ÄÜÁ¿Êغ㶨ÂÉ£¬¶ÔѧÉúÄÜÁ¦µÄÒªÇó½Ï¸ß£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿