题目内容

精英家教网如图所示,质量相等的两个滑块位于光滑水平桌面上.其中,弹簧两端分别与静止的滑块N和挡板P相连接,弹簧与挡板的质量均不计,挡板P没有固定在地面上;滑块M以初速度v0向右运动,它与挡板P碰撞(不粘连)后开始压缩弹簧,最后,滑块N以速度v0向右运动.在此过程中(  )
分析:两滑块碰撞的过程中动量守恒,M与P碰撞压缩弹簧时,M做减速运动,N做加速运动,开始时M的速度大于N的速度,当M与N速度相等时,弹簧被压缩到最短,此时弹簧弹性势能最大,根据机械能守恒定律可知此时滑块动能之和最小.
解答:解:M与P碰撞压缩弹簧时,M做减速运动,N做加速运动,开始时M的速度大于N的速度,当M与N速度相等时,弹簧被压缩到最短,
设相等时的速度为v,根据动量守恒定律得:
mv0=2mv
解得v=
v0
2
,故C错误,D正确;
两小球和弹簧的机械能守恒,当弹性势能最大时,两滑块动能之和最小,所以当M与N速度相等时,弹簧被压缩到最短,弹簧弹性势能最大,此时两滑块动能之和最小,故A错误,B正确;
故选BD
点评:本题是系统动量守恒和机械能守恒的问题.两个质量相等的小球发生弹性碰撞时,将交换速度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网