13.若y=lnx,则其图象在x=2处的切线斜率是( )
A. | 1 | B. | $\frac{1}{2}$ | C. | 2 | D. | 0 |
11.若函数f(x)=aln(x+$\sqrt{{x^2}+1}$)+$\frac{b}{{{2^x}-1}}$+$\frac{b+6}{2}$(a,b为常数),在(0,+∞)上有最小值4,则函数f(x)在(-∞,0)上有( )
A. | 最大值4 | B. | 最小值-4 | C. | 最大值2 | D. | 最小值-2 |
10.若x1满足3x-1=2-x,x2满足log3(x-1)+x-2=0,则x1+x2等于( )
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
9.已知$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$,则函数f(x)=( )
A. | x2-2(x≠0) | B. | x2-2(x≥2) | C. | x2-2(|x|≥2) | D. | x2-2 |
8.用max{a,b,c}表示a,b,c三个数中的最大值,设f(x)=max{2x,x+2,10-x}(x≥0),则f(x)取得最小值时x所在区间为( )
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
6.函数$f(x)=\frac{{2\sqrt{x}}}{x+1}$的最大值为( )
A. | 2 | B. | 1 | C. | $\sqrt{2}$ | D. | 4 |
4.设点P(x,y)满足条件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$,点Q(a,b)满足ax+by≤1恒成立,其中O是原点,a≤0,b≥0,则Q点的轨迹所围成的图形的面积为( )
0 252680 252688 252694 252698 252704 252706 252710 252716 252718 252724 252730 252734 252736 252740 252746 252748 252754 252758 252760 252764 252766 252770 252772 252774 252775 252776 252778 252779 252780 252782 252784 252788 252790 252794 252796 252800 252806 252808 252814 252818 252820 252824 252830 252836 252838 252844 252848 252850 252856 252860 252866 252874 266669
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |