2.若f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=( )
A. | 2 | B. | 3 | C. | 6 | D. | 9 |
20.已知集合M={x|x=$\frac{k}{5}+\frac{1}{10}$,k∈Z} N={x|$\frac{k}{10}+\frac{1}{5}$,k∈Z},则( )
A. | M=N | B. | M⊆N | C. | M?N | D. | M∩N=Φ |
17.(Ⅰ)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年此市的个人年平均收入(保留三位有效数字).
其中$\sum_{i=1}^{5}$xiyi=421,$\sum_{i=1}^{5}$xi2=55
附1:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overrightarrow{y}$-$\stackrel{∧}{b}$$\overline{x}$
(Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:
完成上表,并回答:是否有95%以上的把握认为“收入与接受培训时间有关系”.
附2:
附3:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.(n=a+b+c+d)
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
附1:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overrightarrow{y}$-$\stackrel{∧}{b}$$\overline{x}$
(Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:
受培时间一年以上 | 受培时间不足一年 | ||
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 10 | |
100 |
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.(n=a+b+c+d)
15.一个容量为100的样本,其数据的分组与各组的参数如下:(0,10〕,12;(10,20〕,13;(20,30〕,15;(30,40〕,24;(40,50〕,16;(50,60〕,13;(60,70〕,7;则这样本数据落在(10,40〕上的频率为( )
0 251085 251093 251099 251103 251109 251111 251115 251121 251123 251129 251135 251139 251141 251145 251151 251153 251159 251163 251165 251169 251171 251175 251177 251179 251180 251181 251183 251184 251185 251187 251189 251193 251195 251199 251201 251205 251211 251213 251219 251223 251225 251229 251235 251241 251243 251249 251253 251255 251261 251265 251271 251279 266669
A. | 0.13 | B. | 0.39 | C. | 0.52 | D. | 0.64 |