20.某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费x与旅游收入y(单位:万元)之间有如表对应数据:
(Ⅰ)求旅游收入y对广告支出费x的线性回归方程y=bx+a,若广告支出费为12万元,预测旅游收入;
(Ⅱ)在已有的五组数据中任意抽取两组,根据(Ⅰ)中的线性回归方程,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{\;}$$\overline{x}$,$\overline{y}$为样本平均值.
参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{i}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380.
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(Ⅱ)在已有的五组数据中任意抽取两组,根据(Ⅰ)中的线性回归方程,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{\;}$$\overline{x}$,$\overline{y}$为样本平均值.
参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{i}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380.
17.鹰潭市某学校计划招聘男教师x名,女教师y名,x和y须满足约束条件$\left\{\begin{array}{l}{2x-y≥5}\\{x-y≤2}\\{x<6}\end{array}\right.$,则该校招聘的教师最多( )名.
0 246022 246030 246036 246040 246046 246048 246052 246058 246060 246066 246072 246076 246078 246082 246088 246090 246096 246100 246102 246106 246108 246112 246114 246116 246117 246118 246120 246121 246122 246124 246126 246130 246132 246136 246138 246142 246148 246150 246156 246160 246162 246166 246172 246178 246180 246186 246190 246192 246198 246202 246208 246216 266669
A. | 7 | B. | 8 | C. | 10 | D. | 13 |