13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列{an},则该数列的通项公式为( )
A. | an=$\frac{n-1}{2}$ | B. | an=n-1 | C. | an=(n-1)2 | D. | an=2n-2 |
12.把A、B、C、D四件玩具分给三个小朋友,每位小朋友至少分到一件玩具,且A、B两件玩具不能分给同一个人,则不同的分法有( )
A. | 36种 | B. | 30种 | C. | 24种 | D. | 18种 |
10.微信是现代生活进行信息交流的重要工具,距据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余每天使用微信在一小时以上,若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的人中75%是青年人,若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中$\frac{2}{3}$是青年人.
(Ⅰ)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表.
2×2列联表.
(Ⅱ)由列联表中所得数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(Ⅲ)采用分层抽样的方法从“经常使用微信”中抽取6人,从这6人中任选2人,求事件A“选出的2人均是青年人”的概率.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表.
2×2列联表.
青年人 | 中年人 | 合计 | |
经常使用微信 | |||
不经常使用微信 | |||
合计 |
(Ⅲ)采用分层抽样的方法从“经常使用微信”中抽取6人,从这6人中任选2人,求事件A“选出的2人均是青年人”的概率.
附:
P(K2≥k) | 0.010 | 0.001 |
k | 6.635 | 10.828 |
7.将函数f(x)=$\sqrt{3}$cos2$\frac{x}{2}$+$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$的图象上所有点的纵坐标不变,横坐标变为原来的$\frac{1}{2}$,再将所得图象向右平移$\frac{π}{3}$得到函数g(x),则函数g(x)的解析式为( )
A. | g(x)=cos$\frac{x}{2}$ | B. | g(x)=-sin2x | C. | g(x)=sin(2x-$\frac{π}{3}$) | D. | g(x)=sin($\frac{x}{2}$+$\frac{π}{6}$) |
6.设a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$3,则( )
A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | c>a>b |
5.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )
0 245926 245934 245940 245944 245950 245952 245956 245962 245964 245970 245976 245980 245982 245986 245992 245994 246000 246004 246006 246010 246012 246016 246018 246020 246021 246022 246024 246025 246026 246028 246030 246034 246036 246040 246042 246046 246052 246054 246060 246064 246066 246070 246076 246082 246084 246090 246094 246096 246102 246106 246112 246120 266669
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分又不必要条件 |