10.f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1处取最大值,则( )
A. | f(x-1)一定是奇函数 | B. | f(x-1)一定是偶函数 | ||
C. | f(x+1)一定是奇函数 | D. | y=f(x+1)一定是偶函数 |
5.设$\frac{1}{7}$≤k$≤\frac{1}{4}$,函数f(x)=|2x-1|-k的零点分别为x1,x2(x1<x2),函数g(x)=|2x-1|-$\frac{k}{2k+1}$的零点分别为x3,x4(x3<x4),则2${\;}^{({x}_{1}+{x}_{4})-({x}_{2}+{x}_{3})}$的最大值为( )
A. | $\frac{21}{25}$ | B. | $\frac{4}{25}$ | C. | $\frac{1}{16}$ | D. | $\frac{15}{16}$ |
3.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点垂直于双曲线实轴的直线交双曲线于P,Q两点,我们称线段PQ为双曲线的通径,若双曲线通径长是焦距的两倍,则此双曲线的离心率是( )
0 245441 245449 245455 245459 245465 245467 245471 245477 245479 245485 245491 245495 245497 245501 245507 245509 245515 245519 245521 245525 245527 245531 245533 245535 245536 245537 245539 245540 245541 245543 245545 245549 245551 245555 245557 245561 245567 245569 245575 245579 245581 245585 245591 245597 245599 245605 245609 245611 245617 245621 245627 245635 266669
A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\sqrt{5}+1$ | C. | $\frac{\sqrt{2}+1}{2}$ | D. | $\sqrt{2}+1$ |