题目内容

5.设$\frac{1}{7}$≤k$≤\frac{1}{4}$,函数f(x)=|2x-1|-k的零点分别为x1,x2(x1<x2),函数g(x)=|2x-1|-$\frac{k}{2k+1}$的零点分别为x3,x4(x3<x4),则2${\;}^{({x}_{1}+{x}_{4})-({x}_{2}+{x}_{3})}$的最大值为(  )
A.$\frac{21}{25}$B.$\frac{4}{25}$C.$\frac{1}{16}$D.$\frac{15}{16}$

分析 由题意可得${2}^{{x}_{1}}$=1-k,${2}^{{x}_{2}}$=1+k,从而可化简出${2}^{{x}_{2}-{x}_{1}}$=$\frac{1+k}{1-k}$;同理可得${2}^{{x}_{4}-{x}_{3}}$=$\frac{1+3k}{1+k}$;从而化简2${\;}^{({x}_{1}+{x}_{4})-({x}_{2}+{x}_{3})}$再求最值即可.

解答 解:∵函数f(x)=|2x-1|-k的零点分别为x1,x2(x1<x2),
∴${2}^{{x}_{1}}$=1-k,${2}^{{x}_{2}}$=1+k;
∴${2}^{{x}_{2}-{x}_{1}}$=$\frac{1+k}{1-k}$;
同理可得,${2}^{{x}_{4}-{x}_{3}}$=$\frac{1+3k}{1+k}$;
故2${\;}^{({x}_{1}+{x}_{4})-({x}_{2}+{x}_{3})}$=$\frac{(1+3k)(1-k)}{(1+k)^{2}}$=1-$\frac{4{k}^{2}}{(1+k)^{2}}$≤$\frac{15}{16}$;
故选:D.

点评 本题考查了绝对值函数的应用,指数函数的性质应用及函数零点与方程的根的关系应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网