题目内容

15.在△ABC中,∠ABC=30°,AB=$\sqrt{3}$,BC边上的中线AD=1,则AC的长度为(  )
A.1或$\sqrt{7}$B.$\sqrt{7}$C.$\sqrt{3}$D.1或$\sqrt{3}$

分析 在三角形ABD中,利用余弦定理列出关系式,把AB与AD,cos∠ABC的值代入求出BD的长,进而确定出BC的长,在三角形ABC中,利用余弦定理求出AC的长即可.

解答 解:在△ABD中,∠ABC=30°,AB=$\sqrt{3}$,AD=1,
由余弦定理得:AD2=AB2+BD2-2AB•BD•cos∠ABC,即1=3+BD2-3BD,
解得:BD=1或BD=2,
若BD=1,则BC=2CD=2,
在△ABC中,由余弦定理得:AC2=AB2+BC2-2AB•BC•cos∠ABC=3+4-6=1,
解得:AC=1;
若BD=2,则BC=2CD=4,
在△ABC中,由余弦定理得:AC2=AB2+BC2-2AB•BC•cos∠ABC=3+16-12=7,
解得:AC=$\sqrt{7}$,
综上,AC的长为1或$\sqrt{7}$.
故选:A.

点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网