题目内容
.
解析试题分析:.考点:指数式与对数式的运算.
为了寻找马航残骸,我国“雪龙号”科考船于2014年3月26日从港口出发,沿北偏东角的射线方向航行,而在港口北偏东角的方向上有一个给科考船补给物资的小岛,海里,且.现指挥部需要紧急征调位于港口正东海里的处的补给船,速往小岛装上补给物资供给科考船.该船沿方向全速追赶科考船,并在处相遇.经测算当两船运行的航线与海岸线围成的三角形的面积最小时,这种补给方案最优.(1)求关于的函数关系式;(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?
计算:① ; ②.
某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足.设()百米,百米.(1)试将表示成的函数,并求出函数的解析式;(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.
某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比.已知商品单价降低2元时,一星期多卖出8件.(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?
已知的图象关于坐标原点对称。(1)求的值,并求出函数的零点;(2)若函数在[0,1]内存在零点,求实数b的取值范围;(3)设,已知的反函数=,若不等式在上恒成立,求满足条件的最小整数k的值。
某学校拟建一块周长为400m的操场,如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽?
定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=- (a∈R).(1)求f(x)在[0,1]上的最大值;(2)若f(x)是[0,1]上的增函数,求实数a的取值范围.
已知m、n为正整数,a>0且a≠1,且logam+loga+loga+…+loga=logam+logan,求m、n的值.