题目内容

某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足
()百米,百米.

(1)试将表示成的函数,并求出函数的解析式;
(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.

(1);(2):当米时,整个中转站的占地面积最小,最小面积是平方米.

解析试题分析:(1)要求函数关系式,实际上是建立起之间的等量关系,分析图形及已知条件,我们可借助于三角形有面积,,从这个等式中,解出,即得要求的函数式;(2)有了(1)中的关系式,就可表示为一个字母的式子,它是一个分式函数,由于分母是一次,而分子是二次的,故可这样变形,正好这个表达式可以用基本不等式来求得最小值.
试题解析:(1)结合图形可知,
于是,
解得
(2)由(1)知,
因此,

(当且仅当,即时,等号成立).
答:当米时,整个中转站的占地面积最小,最小面积是平方米.12分
考点:求函数解析式,三角形的面积公式,分式函数的最值与基本不等式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网