题目内容
已知函数f(x)=2cosxsin(x+)-sin2x+sinxcosx
(1)求函数f(x)的最小正周期;
(2)求f(x)的最小值及取得最小值时相应的x的值;
(3)若当x∈[,]时,f(x)的反函数为f-1(x),求f--1(1)的值。
(1)求函数f(x)的最小正周期;
(2)求f(x)的最小值及取得最小值时相应的x的值;
(3)若当x∈[,]时,f(x)的反函数为f-1(x),求f--1(1)的值。
(1) f(x)的最小正周期T=π, (2) x=kπ- (k∈Z)时,f(x)取得最小值-2,(3) f--1(1)=
(1)f(x)=2cosxsin(x+)-sin2x+sinxcosx
=2cosx(sinxcos+cosxsin)-sin2x+sinxcosx
=2sinxcosx+cos2x=2sin(2x+)
∴f(x)的最小正周期T=π
(2)当2x+=2kπ-,即x=kπ- (k∈Z)时,f(x)取得最小值-2.
(3)令2sin(2x+)=1,又x∈[],
∴2x+∈[,],∴2x+=,
则x=,故f--1(1)=.
=2cosx(sinxcos+cosxsin)-sin2x+sinxcosx
=2sinxcosx+cos2x=2sin(2x+)
∴f(x)的最小正周期T=π
(2)当2x+=2kπ-,即x=kπ- (k∈Z)时,f(x)取得最小值-2.
(3)令2sin(2x+)=1,又x∈[],
∴2x+∈[,],∴2x+=,
则x=,故f--1(1)=.
练习册系列答案
相关题目