题目内容

已知圆C:
x=-3+2sinθ
y=2cosθ
(θ为参数),点F为抛物线y2=-4x
的焦点,C为圆的圆心,则|CF|等于(  )
A、6B、4C、2D、0
分析:由题意将圆C先化为一般方程坐标,然后再计算出圆心,然后再求出抛物线的焦点,最后再计算|GF|.
解答:解:∵x=-3+2sinθ,y=2cosθ,
∴x+3=2sinθ,y=2cosθ,将方程两边平方再相加,
∴(x+3)2+y2=4,∴G(-3,0),
∵F为抛物线y2=-4x的焦点,
∴F(-1,0),
∴|GF|=
22
=2,
故选C.
点评:此题考查抛物线的性质和参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网