题目内容
【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x﹣m|﹣1.
(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.
【答案】
(1)解:由f(x)≤2得,|x﹣m|≤3,解得m﹣3≤x≤m+3,
又已知不等式f(x)≤2的解集为{x|﹣1≤x≤5},∴ ,解得m=2
(2)解:当m=2时,f(x)=|x﹣2|﹣1,由于f(x)+f(x+5)≥t﹣2对一切实数x恒成立,
则|x﹣2|+|x+3|﹣2≥t﹣2对一切实数x恒成立,即|x﹣2|+|x+3|≥t对一切实数x恒成立,
设g(x)=|x﹣2|+|x+3|,
于是 ,
所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.
综上可得,g(x)的最小值为5,∴t≤5,
即t的取值范围为(﹣∞,5]
【解析】(1)求得不等式f(x)≤2的解集,再根据不等式f(x)≤2的解集为{x|﹣1≤x≤5},求得实数m的值.(2)由题意可得g(x)=|x﹣2|+|x+3|的最小值大于或等于t﹣2,求得g(x)=|x﹣2|+|x+3|的最小值,可得t的范围.
【考点精析】利用绝对值不等式的解法对题目进行判断即可得到答案,需要熟知含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
练习册系列答案
相关题目