题目内容

已知an=log(n+2)(n+3),我们把使乘积a1•a2•a3•…•an为整数的数n称为“优数”,则在区间(0,2012)内所有优数的个数为(  )
分析:利用对数的运算性质化简a1•a2•a3•…•an,得到a1•a2•a3•…•an=log3(n+3),要使a1•a2•a3•…•an为整数,则n+3是3的k次方(k∈Z).由此求出在区间(0,2012)内n的取值即可.
解答:解:由an=log(n+2)(n+3),
∴a1•a2•a3•…•an=log34•log45…logn+2(n+3)=
lg4
lg3
lg5
lg4
lg6
lg5
lg(n+3)
lg(n+2)
=
lg(n+3)
lg3
=log3(n+3).
∵a1•a2•a3•…•an为整数,
∴n+3是3的k次方(k∈Z).
∴n+3可取 9,27,81,243,729.
则n在区间(0,2012)内可取 6,24,78,240,726.
∴在区间(0,2012)内所有“优数”的个数为5.
故选:C.
点评:本题是新定义题,考查了对数的运算性质,考查了化归思想方法,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网