题目内容
【题目】已知△ABC的周长为l,面积为S,则△ABC的内切圆半径为r= .将此结论类比到空间,已知四面体ABCD的表面积为S,体积为V,则四面体ABCD的内切球的半径R= .
【答案】
【解析】解:设四面体的内切球的球心为O, 则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为 V四面体A﹣BCD= (S1+S2+S3+S4)R
∴R=
所以答案是: .
【考点精析】根据题目的已知条件,利用类比推理和球内接多面体的相关知识可以得到问题的答案,需要掌握根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理;球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长.
练习册系列答案
相关题目
【题目】某市的教育主管部门对所管辖的学校进行年终督导评估,为了解某学校师生对学校教学管理的满意度,分别从教师和不同年级的同学中随机抽取若干师生,进行评分(满分100分),绘制如下频率分布直方图(分组区间为, , , , , ),并将分数从低到高分为四个等级:
满意度评分 | ||||
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
已知满意度等级为基本满意的有340人.
(1)求表中的值及不满意的人数;
(2)在等级为不满意的师生中,老师占,现从该等级师生中按分层抽样抽取12人了解不满意的原因,并从中抽取3人担任整改督导员,记为老师整改督导员的人数,求的分布列及数学期望.