题目内容
(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知函数, .(1)若,求函数的值;(2)求函数的值域.
(1)(2)
解析
(本题满分14分)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本题满分14分)
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为,则出厂价相应提高的比例为,同时预计年销售量增加的比例为.已知年利润=(出厂价–投入成本)年销售量.
(1)写出本年度预计的年利润与投入成本增加的比例的关系式;
(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例应在什么范围内?
(本小题满分14分)
(本题满分14分)设函数=,∈R
(1)若=为的极值点,求实数;
(2)求实数的取值范围,使得对任意的(0,3],恒有≤4成立.
注:为自然对数的底数。
(本题满分14分)某种储蓄按复利(把前一期的利息和本金加在一起作本金,再计算下一期的利息)计算利息,若本金为元,每期利率为,设存期为,本利和(本金加上利息)为元。
(Ⅰ)写出本利和随存期变化的函数解析式;
(Ⅱ)如果存入本金元,每期利率为,试计算期后的本利和。
(参考数据:)
1.(本题满分14分)如图,矩形中,,,
为上的点,且,.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求三棱锥的体积.