ÌâÄ¿ÄÚÈÝ
ÒÑÖª¼¯ºÏSn={X|X=£¨x1£¬x2£¬¡£¬xn£©£¬x1¡Ê{0£¬1}£¬i=1£¬2£¬¡£¬n}£¨n¡Ý2£©¶ÔÓÚA=£¨a1£¬a2£¬¡an£¬£©£¬B=£¨b1£¬b2£¬¡bn£¬£©¡ÊSn£¬¶¨ÒåAÓëBµÄ²îΪA-B=£¨|a1-b1|£¬|a2-b2|£¬¡|an-bn|£©£»AÓëBÖ®¼äµÄ¾àÀëΪd(A£¬B)=
i-1 |
£¨¢ñ£©µ±n=5ʱ£¬ÉèA=£¨0£¬1£¬0£¬0£¬1£©£¬B=£¨1£¬1£¬1£¬0£¬0£©£¬Çód£¨A£¬B£©£»
£¨¢ò£©Ö¤Ã÷£º?A£¬B£¬C¡ÊSn£¬ÓÐA-B¡ÊSn£¬ÇÒd£¨A-C£¬B-C£©=d£¨A£¬B£©£»
£¨¢ó£©Ö¤Ã÷£º?A£¬B£¬C¡ÊSn£¬d£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©Èý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÒâÖеĶ¨ÒåºÍ¼¯ºÏA¡¢BÇó³öA-B£¬ÔÙÓÉAÓëBÖ®¼äµÄ¾àÀ빫ʽd(A£¬B)=
|a1-b1|£¬Çó³öd£¨A£¬B£©£»
£¨¢ò£©¸ù¾ÝÌâÒâÉè³ö¼¯ºÏA¡¢B¡¢C£¬Ôòai£¬bi£¬ci¡Ê{0£¬1}£¨i=1£¬2£¬n£©£¬¹ÊµÃA-B¡ÊSn£¬ÔÙ·Öci=0ºÍci=1Á½ÖÖÇé¿öÇó³öd£¨A-C£¬B-C£©ºÍd£¨A£¬B£©£»
£¨¢ó£©¸ù¾ÝÌâÒâÉè³ö¼¯ºÏA¡¢B¡¢C£¬ÔÙ¸ù¾Ý£¨¢ò£©µÄ½áÂÛ£¬±íʾ³öd£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©£¬ÔÙ¸ù¾Ý¼¯ºÏµÄÔªËØΪ¡°0£¬1¡±£¬È·¶¨ËùÇóÈý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý£®
i-1 |
£¨¢ò£©¸ù¾ÝÌâÒâÉè³ö¼¯ºÏA¡¢B¡¢C£¬Ôòai£¬bi£¬ci¡Ê{0£¬1}£¨i=1£¬2£¬n£©£¬¹ÊµÃA-B¡ÊSn£¬ÔÙ·Öci=0ºÍci=1Á½ÖÖÇé¿öÇó³öd£¨A-C£¬B-C£©ºÍd£¨A£¬B£©£»
£¨¢ó£©¸ù¾ÝÌâÒâÉè³ö¼¯ºÏA¡¢B¡¢C£¬ÔÙ¸ù¾Ý£¨¢ò£©µÄ½áÂÛ£¬±íʾ³öd£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©£¬ÔÙ¸ù¾Ý¼¯ºÏµÄÔªËØΪ¡°0£¬1¡±£¬È·¶¨ËùÇóÈý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâµÃ£¬A-B=£¨|0-1|£¬|1-1|£¬|0-1|£¬|0-0|£¬|1-0|£©=£¨1£¬0£¬1£¬0£¬1£©£¬
d£¨A£¬B£©=|0-1|+|1-1|+|0-1|+|0-0|+|1-0|=3
£¨¢ò£©Ö¤Ã÷£ºÉèA=£¨a1£¬a2£¬an£©£¬B=£¨b1£¬b2£¬bn£©£¬C=£¨c1£¬c2£¬cn£©¡ÊSn
ÒòΪa1£¬b1¡Ê{0£¬1}£¬ËùÒÔ|a1-b1|¡Ê{0£¬1}£¨i=1£¬2£¬n£©
´Ó¶øA-B=£¨|a1-b1|£¬|a2-b2|£¬|an-bn|£©¡ÊSn
ÓÉÌâÒâÖªai£¬bi£¬ci¡Ê{0£¬1}£¨i=1£¬2£¬n£©
µ±ci=0ʱ£¬||ai-ci|-|bi-ci||=|ai-bi|
µ±ci=1ʱ£¬||ai-ci|-|bi-ci||=|£¨1-ai£©-£¨1-bi£©|=|ai-bi|
ËùÒÔd(A-C£¬B-C)=
|ai-bi|=d(A£¬B)
£¨¢ó£©Ö¤Ã÷£ºÉèA=£¨a1£¬a2£¬an£©£¬B=£¨b1£¬b2£¬bn£©£¬C=£¨c1£¬c2£¬cn£©¡ÊSn£¬
d£¨A£¬B£©=k£¬d£¨A£¬C£©=l£¬d£¨B£¬C£©=h
¼Ç0=£¨0£¬0£¬0£©¡ÊSn£¬
ÓÉ£¨¢ò£©¿ÉÖª
ËùÒÔ|bi-ai|£¨i=1£¬2£¬n£©ÖÐ1µÄ¸öÊýΪk£¬|ci-ai|£¨i=1£¬2£¬n£©ÖÐ1µÄ¸öÊýΪl
ÉètÊÇʹ|bi-ai|=|ci-ai|=1³ÉÁ¢µÄiµÄ¸öÊý£®Ôòh=l+k-2t
ÓÉ´Ë¿ÉÖª£¬k£¬l£¬hÈý¸öÊý²»¿ÉÄܶ¼ÊÇÆæÊý
¼´d£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©Èý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý£®
d£¨A£¬B£©=|0-1|+|1-1|+|0-1|+|0-0|+|1-0|=3
£¨¢ò£©Ö¤Ã÷£ºÉèA=£¨a1£¬a2£¬an£©£¬B=£¨b1£¬b2£¬bn£©£¬C=£¨c1£¬c2£¬cn£©¡ÊSn
ÒòΪa1£¬b1¡Ê{0£¬1}£¬ËùÒÔ|a1-b1|¡Ê{0£¬1}£¨i=1£¬2£¬n£©
´Ó¶øA-B=£¨|a1-b1|£¬|a2-b2|£¬|an-bn|£©¡ÊSn
ÓÉÌâÒâÖªai£¬bi£¬ci¡Ê{0£¬1}£¨i=1£¬2£¬n£©
µ±ci=0ʱ£¬||ai-ci|-|bi-ci||=|ai-bi|
µ±ci=1ʱ£¬||ai-ci|-|bi-ci||=|£¨1-ai£©-£¨1-bi£©|=|ai-bi|
ËùÒÔd(A-C£¬B-C)=
n |
i=1 |
£¨¢ó£©Ö¤Ã÷£ºÉèA=£¨a1£¬a2£¬an£©£¬B=£¨b1£¬b2£¬bn£©£¬C=£¨c1£¬c2£¬cn£©¡ÊSn£¬
d£¨A£¬B£©=k£¬d£¨A£¬C£©=l£¬d£¨B£¬C£©=h
¼Ç0=£¨0£¬0£¬0£©¡ÊSn£¬
ÓÉ£¨¢ò£©¿ÉÖª
|
ËùÒÔ|bi-ai|£¨i=1£¬2£¬n£©ÖÐ1µÄ¸öÊýΪk£¬|ci-ai|£¨i=1£¬2£¬n£©ÖÐ1µÄ¸öÊýΪl
ÉètÊÇʹ|bi-ai|=|ci-ai|=1³ÉÁ¢µÄiµÄ¸öÊý£®Ôòh=l+k-2t
ÓÉ´Ë¿ÉÖª£¬k£¬l£¬hÈý¸öÊý²»¿ÉÄܶ¼ÊÇÆæÊý
¼´d£¨A£¬B£©£¬d£¨A£¬C£©£¬d£¨B£¬C£©Èý¸öÊýÖÐÖÁÉÙÓÐÒ»¸öÊÇżÊý£®
µãÆÀ£º±¾Ì⿼²éÁËÀûÓÃж¨ÒåºÍ¼¯ºÏµÄÔËËãÐÔÖÊ×ÛºÏÓ¦ÓõÄÄÜÁ¦£¬ÊôÓÚ¸ßÄѶÈÌ⣬ÐèÒªÈÏÕæÉóÌ⣬ץסж¨ÒåµÄ±¾ÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿