题目内容

12.已知矩阵M=$(\begin{array}{l}{a}&{1}\\{0}&{b}\end{array})$(a>0,b>0).
(Ⅰ)当a=2,b=3时,求矩阵M的特征值以及属于每个特征值的一个特征向量;
(Ⅱ)当a=b时,曲线C:x2-y2=1在矩阵M的对应变换作用下得到曲线C′:x2-2xy-1=0,求a的值.

分析 (Ⅰ)通过令特征多项式f(λ)=(λ-2)(λ-3)=0,得λ=2或λ=3,进而可得结论;
(Ⅱ)利用$[\begin{array}{l}{a}&{1}\\{0}&{b}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,并将变换公式代入曲线C′:x2-2xy-1=0,计算即可.

解答 解:(Ⅰ)∵a=2,b=3,∴M=$[\begin{array}{l}{2}&{1}\\{0}&{3}\end{array}]$,
令f(λ)=$|\begin{array}{l}{λ-2}&{-1}\\{0}&{λ-3}\end{array}|$=(λ-2)(λ-3)=0,
得λ=2或λ=3,
当λ=2时,由$[\begin{array}{l}{2}&{1}\\{0}&{3}\end{array}]$$\overrightarrow{{ξ}_{1}}$=2$\overrightarrow{{ξ}_{1}}$,得$\overrightarrow{{ξ}_{1}}$=$[\begin{array}{l}{1}\\{0}\end{array}]$,
当λ=3时,由$[\begin{array}{l}{2}&{1}\\{0}&{3}\end{array}]$$\overrightarrow{{ξ}_{2}}$=3$\overrightarrow{{ξ}_{2}}$,得$\overrightarrow{{ξ}_{2}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,
所以对应特征值为2的一个特征向量是$\overrightarrow{{ξ}_{1}}$=$[\begin{array}{l}{1}\\{0}\end{array}]$;
对应特征值为3的一个特征向量是$\overrightarrow{{ξ}_{2}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$.
(Ⅱ)设曲线C上的点P(x,y)在矩阵M的作用下变成P′(x′,y′),
则$[\begin{array}{l}{a}&{1}\\{0}&{b}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,即$\left\{\begin{array}{l}{x′=ax+y}\\{y′=ay}\end{array}\right.$,
将变换公式代入曲线C′:x2-2xy-1=0,
可得(ax+y)2-2(ax+y)y-1=0,
即a2x2-y2-1=0,
即为曲线C:x2-y2=1,
∴a2=1,
又a>0,∴a=1.

点评 本题考查矩阵的变换性质,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网